979 resultados para Pathogens
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.
Resumo:
The proprotein convertases (PCs) are a family of nine mammalian enzymes that play key roles in the maintenance of cell homeostasis by activating or inactivating proteins via limited proteolysis under temporal and spatial control. A wide range of pathogens, including major human pathogenic viruses can hijack cellular PCs for their own purposes. In particular, productive infection with many enveloped viruses critically depends on the processing of their fusion-active viral envelope glycoproteins by cellular PCs. Based on their crucial role in virus-host interaction, PCs can be important determinants for viral pathogenesis and represent promising targets of therapeutic antiviral intervention. In the present review we will cover basic aspects and recent developments of PC-mediated maturation of viral envelope glycoproteins of selected medically important viruses. The molecular mechanisms underlying the recognition of PCs by viral glycoproteins will be described, including recent findings demonstrating differential PC-recognition of viral and cellular substrates. We will further discuss a possible scenario how viruses during co-evolution with their hosts adapted their glycoproteins to modulate the activity of cellular PCs for their own benefit and discuss the consequences for virus-host interaction and pathogenesis. Particular attention will be given to past and current efforts to evaluate cellular PCs as targets for antiviral therapeutic intervention, with emphasis on emerging highly pathogenic viruses for which no efficacious drugs or vaccines are currently available.
Resumo:
There is accumulating evidence that invertebrates can acquire long-term protection against pathogens through immune priming. However, the range of pathogens eliciting immune priming and the specificity of the response remain unclear. Here, we tested if the exposure to a natural fungal pathogen elicited immune priming in ants. We found no evidence for immune priming in Formica selysi workers exposed to Beauveria bassiana. The initial exposure of ants to the fungus did not alter their resistance in a subsequent challenge with the same fungus. There was no sign of priming when using homologous and heterologous combinations of fungal strains for exposure and subsequent challenges at two time intervals. Hence, within the range of conditions tested, the immune response of this social insect to the fungal pathogen appears to lack memory and strain-specificity. These results show that immune priming is not ubiquitous across pathogens, hosts and conditions, possibly because of immune evasion by the pathogen or efficient social defences by the host.
Resumo:
Since 1990, several techniques have been developed to photochemically inactivate pathogens in platelet concentrates, potentially leading to safer transfusion therapy. The three most common methods are amotosalen/UVA (INTERCEPT Blood System), riboflavin/UVA-UVB (MIRASOL PRT), and UVC (Theraflex-UV). We review the biology of pathogen inactivation methods, present their efficacy in reducing pathogens, discuss their impact on the functional aspects of treated platelets, and review clinical studies showing the clinical efficiency of the pathogen inactivation methods and their possible toxicity.
Resumo:
Lectins, carbohydrate-binding proteins of non-immune origin, that agglutinate cells or precipitate polysaccharides and glycoconjugates, are well distributed in nature, mainly in the Plant Kingdom. The great majority of the plante lectins are present in seed cotyledons where they are found in the cytoplasm or int he protein bodies, although they have also been found in roots, stems and leaves. Due to their peculiar properties, the lectins are used as a tool both for analytical and preparative purposes in biochemistry, cellular biology, immunology and related areas. In agriculture and medicine the use of lectins greatly improved in the last few years. The lextins, with few exceptions, are glycoproteins, need divalent cations to display full activity and are, in general, oligomers with variable molecular weight. Although the studies on lectins have completed a century, their role in nature is yet ynknown . Several hypotheses on their physiological functions have been suggested. Thus, lectins could play important roles in defense against pathogens, plant-microorganism symbiosis, cell organization, embryo morphogenesis, phagocytosis, cell wall elongation, pollen recognition and as reserve proteins. A brief review on the general properties and roles of the lectins is given.
Resumo:
Current research and development of antigens for vaccination often center on purified recombinant proteins, viral subunits, synthetic oligopeptides or oligosaccharides, most of them suffering from being poorly immunogenic and subject to degradation. Hence, they call for efficient delivery systems and potent immunostimulants, jointly denoted as adjuvants. Particulate delivery systems like emulsions, liposomes, nanoparticles and microspheres may provide protection from degradation and facilitate the co-formulation of both the antigen and the immunostimulant. Synthetic double-stranded (ds) RNA, such as polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a mimic of viral dsRNA and, as such, a promising immunostimulant candidate for vaccines directed against intracellular pathogens. Poly(I:C) signaling is primarily dependent on Toll-like receptor 3 (TLR3), and on melanoma differentiation-associated gene-5 (MDA-5), and strongly drives cell-mediated immunity and a potent type I interferon response. However, stability and toxicity issues so far prevented the clinical application of dsRNAs as they undergo rapid enzymatic degradation and bear the potential to trigger undue immune stimulation as well as autoimmune disorders. This review addresses these concerns and suggests strategies to improve the safety and efficacy of immunostimulatory dsRNA formulations. The focus is on technological means required to lower the necessary dosage of poly(I:C), to target surface-modified microspheres passively or actively to antigen-presenting cells (APCs), to control their interaction with non-professional phagocytes and to modulate the resulting cytokine secretion profile.
Resumo:
Mice from the majority of inbred strains are resistant to infection by Leishmania major, an obligate intracellular protozoan parasite of macrophages in the mammalian host. In contrast, mice from BALB strains are unable to control infection and develop progressive disease. In this model of infection, genetically determined resistance and susceptibility have been clearly shown to result from the appearance of parasite-specific CD4+ T helper 1 or T helper 2 cells, respectively. This murine model of infection is considered as one of the best experimental systems for the study of the mechanisms operating in vivo at the initiation of polarised T helper 1 and T helper 2 cell maturation. Among the several factors influencing Th cell development, cytokines themselves critically regulate this process. The results accumulated during the last years have clarified some aspects of the role played by cytokines in Th cell differentiation. They are providing critical information that may ultimately lead to the rational devise of means by which to tailor immune responses to the effector functions that are most efficient in preventing and/or controlling infections with pathogens.
Resumo:
Antifungal resistance of Candida species is a clinical problem in the management of diseases caused by these pathogens. In this study we identified from a collection of 423 clinical samples taken from Tunisian hospitals two clinical Candida species (Candida albicans JEY355 and Candida tropicalis JEY162) with decreased susceptibility to azoles and polyenes. For JEY355, the fluconazole (FLC) MIC was 8 μg/ml. Azole resistance in C. albicans JEY355 was mainly caused by overexpression of a multidrug efflux pump of the major facilitator superfamily, Mdr1. The regulator of Mdr1, MRR1, contained a yet-unknown gain-of-function mutation (V877F) causing MDR1 overexpression. The C. tropicalis JEY162 isolate demonstrated cross-resistance between FLC (MIC > 128 μg/ml), voriconazole (MIC > 16 μg/ml), and amphotericin B (MIC > 32 μg/ml). Sterol analysis using gas chromatography-mass spectrometry revealed that ergosterol was undetectable in JEY162 and that it accumulated 14α-methyl fecosterol, thus indicating a perturbation in the function of at least two main ergosterol biosynthesis proteins (Erg11 and Erg3). Sequence analyses of C. tropicalis ERG11 (CtERG11) and CtERG3 from JEY162 revealed a deletion of 132 nucleotides and a single amino acid substitution (S258F), respectively. These two alleles were demonstrated to be nonfunctional and thus are consistent with previous studies showing that ERG11 mutants can only survive in combination with other ERG3 mutations. CtERG3 and CtERG11 wild-type alleles were replaced by the defective genes in a wild-type C. tropicalis strain, resulting in a drug resistance phenotype identical to that of JEY162. This genetic evidence demonstrated that CtERG3 and CtERG11 mutations participated in drug resistance. During reconstitution of the drug resistance in C. tropicalis, a strain was obtained harboring only defective Cterg11 allele and containing as a major sterol the toxic metabolite 14α-methyl-ergosta-8,24(28)-dien-3α,6β-diol, suggesting that ERG3 was still functional. This strain therefore challenged the current belief that ERG11 mutations cannot be viable unless accompanied by compensatory mutations. In conclusion, this study, in addition to identifying a novel MRR1 mutation in C. albicans, constitutes the first report on a clinical C. tropicalis with defective activity of sterol 14α-demethylase and sterol Δ(5,6)-desaturase leading to azole-polyene cross-resistance.
Resumo:
The application of microbial biocontrol agents for the control of fungal plant diseases and plant insect pests is a promising approach in the development of environmentally benign pest management strategies. The ideal biocontrol organism would be a bacterium or a fungus with activity against both, insect pests and fungal pathogens. Here we demonstrate the oral insecticidal activity of the root colonizing Pseudomonas fluorescens CHA0, which is so far known for its capacity to efficiently suppress fungal plant pathogens. Feeding assays with CHA0-sprayed leaves showed that this strain displays oral insecticidal activity and is able to efficiently kill larvae of three important insect pests. We further show data indicating that the Fit insect toxin produced by CHA0 and also metabolites controlled by the global regulator GacA contribute to oral insect toxicity.
Resumo:
The recognition of microbial pathogens based on their molecular patterns is essential for host defense. Recently, Toll-like receptors have been shown not only to recognize viruses as well as bacteria and fungi, but also to trigger an efficient immune response. A recent publication proposed that the retrovirus mouse mammary tumor virus exploits the pattern-recognition receptor Toll-like receptor 4 to achieve more efficient infection.
Resumo:
The biological literature contains many examples of mutual influences between different species of parasites, especially with respect to concomitant helminth infections. Several situations are known in wich the association of infection by Shistosoma mansoni with other pathogens in the same host results in a type of disease wich differs from the simple summation of the individual effects of each infection. The present study concerns concomitant infections involving S. mansoni and enterobacteriaceae; S. mansoni and other helmints such as Ascaris lumbricoides, Ancylostomids, Toxocara canis and species of the genus Hymenolepis; S. mansoni and different protozoa such as Trypanosoma cruzi, T. brucei, Toxoplasma gondii and Plasmodium berghei. The interaction between hepatitis B virus and S. mansoni, leading to prolonged viremia and worsening of liver damage, is also discussed. The paper also treats the simultaneous occurrence of schistosomiasis and other aggravating factors such as malnutrition and neoplasias wich may alter the host's response to the trematode.
Resumo:
Abstract: The increasingly high hygienic standards characterizing westernized societies correlate with an increasingly high prevalence of allergic disease. Initially based on these observations, the hygiene hypothesis postulates that reduced microbial stimulation during infancy impairs the immune system development and increases the risk of allergy. Moreover, there is increasing evidence that the crosstalk existing between the intestine and the resident microbiota is crucial for gut homeostasis. In particular, bacterial colonization of the gut affects the integrity of the gut barrier and stimulates the development of the gut associated immune tissue, both phenomena being essential for the immune system to mount a controlled response to food antigens. Therefore, alterations in the microbial colonization process, by compromising the barrier homeostasis, may increase the risk of food allergy. In this context, antibiotic treatment, frequently prescribed during infancy, affects gut colonization by bacteria. However, little is known about the impact of alterations in the colonization process on the maturation of the gut barrier and on the immunological response to oral antigens. The objective of this work was to determine the impact of a commercial antibiotic preparation employed in pediatric settings on the gut barrier status at the critical period of the suckling/weaning transition and to evaluate the physiological consequences of this treatment in terms of immune response to food antigens. We established an antibiotic-treated suckling rat model relevant to the pediatric population in terms of type, dose and route of administration of the antibiotic and of changes in the patterns of microbial colonization. Oral tolerance to a novel luminal antigen (ovalbumin) was impaired when the antigen was introduced during antibiotic treatment. These results paralleled to alterations in the intestinal permeability to macromolecules and reduced intestinal expression of genes coding for the major histocomptatibility complex II molecules, which suggest a reduced capacity of antigen handling and presentation in the intestine of the antibiotic-treated animals. In addition, low luminal IgA levels and reduced intestinal expression of genes coding for antimicrobial proteins suggest that protection against pathogens was reduced under antibiotic treatment. In conclusion, we observed in suckling rats that treatment with abroad-spectrum antibiotic commonly used in pediatric practices reduced the capacity of the immune system to develop tolerance. The impact of the antibiotic treatment on the immune response to the antigen-was likely mediated by the alterations of the gut microbiota, through impairment in the mechanisms of antigen handling and presentation. This work reinforces the body of data supporting a key role of the intestinal microbiota modulating the risk of allergy development and leads us to propose that the introduction of new food antigens should be avoided during antibiotic treatment in infants. Résumé: L'augmentation du niveau d'hygiène caractérisant les sociétés occidentales semble être fortement corrélée avec l'augmentation des cas d'allergie dans ces pays. De cette observation est née l'hypothèse qu'une diminution des stimuli microbiens pendant l'enfance modifie le développement du système immunitaire augmentant ainsi le risque d'allergie. En ce sens, un nombre croissant de données indiquent que les interactions existant entre l'intestin et les bactéries résidantes sont cruciales pour l'équilibre du système. En effet, la présence de bactéries dans l'intestin affecte l'intégrité de sa fonction de barrière et stimule le développement du système immunitaire intestinal. Ces deux paramètres étant essentiels à la mise en place d'une réponse contrôlée vis à vis d'un antigène reçu oralement, toute modification du processus naturel de colonisation compromettant l'équilibre intestinal pourrait augmenter le risque d'allergie. Les traitements aux antibiotiques, fréquemment prescrits en pédiatrie, modifient de façon conséquente le processus de colonisation bactérienne. Cependant peu de données existent concernant l'impact d'une altération du processus de colonisation sur la maturation de la barrière intestinale et de la réponse immunitaire dirigée contre un antigène. L'objectif de ce travail était de déterminer l'impact d'un antibiotique commercial et employé en pédiatrie sur l'état de la barrière intestinale au moment critique du sevrage et d'évaluer les conséquences physiologiques d'un tel traitement sur la réponse immune à un antigène alimentaire. Nous avons mis en place un modèle de rats allaités, traités à l'antibiotique, le plus proche possible des pratiques pédiatriques, en terme de nature, dose et voie d'administration de l'antibiotique. Nous avons constaté que l'établissement de la tolérance orale à un nouvel antigène (l'ovalbumine) est altéré quand celui-ci est donné pour la première fois au cours du traitement antibiotique. Ces résultats coïncident avec une diminution de la perméabilité intestinale aux macromolécules, ainsi qu'avec une diminution de l'expression des gènes codant pour les molécules du complexe majeur d'histocomptatibilité de classe II, suggérant une modification de l'apprêtement et de la présentation de l'antigène au niveau intestinal chez les rats traités à l'antibiotique. De plus, un faible taux d'IgA et une diminution de l'expression des gènes codant pour des protéines antimicrobiennes, observés après l'administration d'antibiotique, laissent à penser que la protection contre un pathogène est diminuée lors d'un traitement antibiotique. En conclusion, nous avons observé qu'un traitement antibiotique à large spectre d'activité, couramment utilisé en pédiatrie, réduit la capacité d'induction de la tolérance orale chez le rat allaité. L'impact du traitement antibiotique sur la réponse immune semble induite par l'altération de la flore intestinale via son effet sur les mécanismes d'apprêtement et de présentation de l'antigène. Ce travail renforce l'ensemble des données existantes qui accorde à la flore intestinale un rôle clef dans la modulation du risque de développement d'allergie et nous amène à recommander d'éviter l'introduction d'un nouvel aliment lorsqu'un enfant est traité aux antibiotiques.
Resumo:
Parasites may employ particular strategies of eluding an immune response by taking advantage of those mechanisms that normally guarantee immunological self-tolerance. Much in the way as it occurs during the establishment of self-tolerance, live pathogens may induce clonal deletion, functional inactivation(anergy) and immunosupression. At this latter level, it appears that certain pathogens produce immunosupresive cytokine-like mediators or provoke like host the secrete cytokines that will compromise the anti-parasite immune response. It appears that immune responses that preferentially involve T helper l cells (secretors of interleukin-2-and interferon-y) tend to be protective, whereas T helper 2 cells (secretors of IL-4, IL5, IL-6, and IL-10), a population that antagonizes T helper cells, mediate disease susceptibility and are immunopathological reactions. Cytokines produced by T helper 2 cells mediate many symptoms of infection, including eosinophilia, mastocytosis, hyperimmunoglobulinemia, and elevated IgE levels. Administration of IL-2 and IFN-y has beneficial effects in many infections mediated by viruses, bacteria, and protozoa. The use of live vaccinia virus might be an avenue for the treatment of or vaccination against infection. We have found that a vaccinia virus expressing the gene for human IL-2, though attenuated, precipitates autoimmune disease in immunodeficient athymic mice. Thus, although T helper l cytokines may have desired immunostimulatory properties, they also may lead to unwarranted autoaggressive responses.
Resumo:
This paper is written in the context of our changing preception of the immunological system as a system with possible biological roles exceding the prevailung view of a system concerned principally with the defense against external pathogens. The view discussed here relates the immunological system inextricably to the metabolism of iron, the circulation of the blood and the resolution of the evolutionary paradox created by oxygen and iron. Indirect evidence for this inextricable relationship between the two systems can be derived from the discrepancy between the theoretical quasi-impossibility of the existence of an iron deficiency state in the adult and the reality of the WHO numbers of people in the world with iron deficiency anemia. With mounting evidence that TNF, IL-1, and T lymphocyte cytokines affect hemopoieisis and iron metabolism it is possible that the reported discrepancy is a reflection of that inextricable interdependence between the two systems in the face of infection. Further direct evidence for a relationship between T cell subset numbers and iron metabolism is presented from the results of a study of T cell populations in patients with hereditary hemochromatosis. The recent finding of a correlation between low CD8+ lymphocite numbers, liver demage associated with HCVpositivity and severity of iron overload in B-thalassemia major patients (umpublished data of RW Grandy; P. Giardina, M. Hilgartner) concludes this review.
Resumo:
Hemorrhagic fevers caused by arenaviruses are among the most devastating emerging human diseases. Considering the number of individuals affected, the current lack of a licensed vaccine, and the limited therapeutic options, arenaviruses are arguably among the most neglected tropical pathogens and the development of efficacious anti-arenaviral drugs is of high priority. Over the past years significant efforts have been undertaken to identify novel potent inhibitors of arenavirus infection. High throughput screening of small molecule libraries employing pseudotype platforms led to the discovery of several potent and broadly active inhibitors of arenavirus cell entry that are effective against the major hemorrhagic arenaviruses. Mechanistic studies revealed that these novel entry inhibitors block arenavirus membrane fusion and provided novel insights into the unusual mechanism of this process. The success of these approaches highlights the power of small molecule screens in antiviral drug discovery and establishes arenavirus membrane fusion as a robust drug target. These broad screenings have been complemented by strategies targeting cellular factors involved in productive arenavirus infection. Approaches targeting the cellular protease implicated in maturation of the fusion-active viral envelope glycoprotein identified the proteolytic processing of the arenavirus glycoprotein precursor as a novel and promising target for anti-arenaviral strategies.