986 resultados para Palladium(II) oxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate the mechanism through which the extracellular alkalinization promotes relaxation in rat thoracic aorta. Methods: The relaxation response to NaOH-induced extracellular alkalinization (7.4-8.5) was measured in aortic rings pre-contracted with phenylephrine (Phe, 10(-6) M). The vascular reactivity experiments were performed in endothelium-intact and -denuded rings, in the presence or and absence of indomethacin (10(-5) M), NG-nitro-L-arginine methyl ester (L-NAME, 10(-4) M), N-(6-Aminohexyl)-5-chloro-1-naphthalenesulfonamide/HCl (W-7, 10(-7) M), 2,5-dimethylbenzimidazole (DMB, 2 x 10(-5) M) and methyl-B-cyclodextrin (10(-2) M). In addition, the effects of NaOH-induced extracellular alkalinization (pH 8.0 and 8.5) on the intracellular nitric oxide (NO) concentration was evaluated in isolated endothelial cells loaded with diaminofluorescein-FM diacetate (DAF-FM DA, 5 mu M), in the presence and absence of DMB (2 x 10(-5) M). Results: The extracellular alkalinization failed to induce any change in vascular tone in aortic rings pre-contracted with KCl. In rings pre-contracted with Phe, the extracellular alkalinization caused relaxation in the endothelium-intact rings only, and this relaxation was maintained after cyclooxygenase inhibition; completely abolished by the inhibition of nitric oxide synthase (NOS), Ca(2+)/calmodulin and Na(+)/Ca(2+). exchanger (NCX), and partially blunted by the caveolae disassembly. Conclusions: These results suggest that, in rat thoracic aorta, that extracellular alkalinization with NaOH activates the NCX reverse mode of endothelial cells in rat thoracic aorta, thereby the intracellular Ca(2+) concentration and activating the Ca(2+)/calmodulin-dependent NOS. In turn, NO is released promoting relaxation. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balloon catheter injury results in hyper-reactivity to phenylephrine in contralateral carotids. Decreased nitric oxide (NO) modulation and/or increased intracellular calcium concentration triggers vascular smooth muscle contraction. Therefore, this study explores the participation of NO signaling pathway and calcium mobilization on hyper-reactivity to phenylephrine in contralateral carotids. Concentration-response curves for calcium (CaCl(2)) and phenylephrine were obtained in control and contralateral carotids four days after balloon injury, in the presence and absence of the inhibitors (L-NAME, L-NNA, 1400W, 7-NI, Oxyhemoglobin, ODQ or Tiron). Confocal microscopy using Fluo-3AM or DHE was performed to detect the intracellular levels of calcium and reactive oxygen species, respectively. The modulation of NO on phenylephrine-induced contraction was absent in the contralateral carotid. Phenylephrine-induced intracellular calcium mobilization was not altered in contralateral carotids. However, extracellular calcium mobilization by phenylephrine was reduced in the contralateral carotid compared to control arteries, and this result was confirmed by confocal microscopy. L-NAME increased phenylephrine-induced extracellular calcium mobilization in the contralateral carotid to the control levels. Results obtained with L-NNA, 1400W, 7-NI, OxyHb, ODQ or Tiron showed that this response was mediated by products from endothelial NOS (eNOS) different from NO and without soluble guanylate cyclase activation, but it involved superoxide anions. Furthermore. Tiron or L-NNA reduced the levels of reactive oxygen species in contralateral carotids. Data suggest that balloon catheter injury promoted eNOS uncoupling in contralateral carotids, which generates superoxide rather than NO, and reduces phenylephrine-induced extracellular calcium mobilization, despite the hyper-reactivity to phenylephrine in contralateral carotids. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Balloon catheter injury promotes hyperreactivity to phenylephrine (Phe) in the contralateral carotid. Phe-induced contraction involves calcium mobilization, a process that may be sensitive to reactive oxygen species. In this study, we investigated whether increased reactivity to Phe in the contralateral carotid is due to alterations in calcium mobilization by Phe and reactive oxygen species signaling. Concentration-response curves to Phe were obtained in control and contralateral arteries 4 days after balloon injury. Tiron did not modify E(max) to Phe in control arteries but reduced this parameter in the contralateral carotid to control levels. Moreover, immunofluorescence to dihydroethydine showed increased basal oxidative stress in the contralateral artery compared with control artery. Intracellular calcium mobilization by Phe in the contralateral artery was not different from control, but Phe-induced extracellular calcium mobilization was reduced in the contralateral artery compared with that in the control. These data were confirmed by confocal microscopy using Fluo 3-AM. Tiron and SC-236 increased Phe-induced calcium influx in the contralateral artery, which was similar to controls in the same conditions. However, catalase did not modify this response. Taken together, our results suggest that superoxide anions and prostanoids from cyclooxygenase-2 alter pathways downstream of alpha(1)-adrenoceptor activation in the contralateral carotid in response to injury. This results in reduced Phe-induced calcium influx, despite hyperreactivity to Phe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a gaseous molecule that has specific functions dictated by its localization and its kinetics of release. As NO-donors have a range of potential uses in the skin, much attention has been paid to the development of topical NO delivery systems. The aim of this work was to study the release rate and the skin penetration of the NO-donor cis[Ru(NO(2))(bpy)(2)(4-pic)](+) from different gel formulations and their potential as topical NO delivery systems under light stimuli. Among the formulations developed, the anionic gel retarded the nitro-ruthenium complex diffusion and also obstructed NO release after light irradiation. On the other hand, NO release before light irradiation was observed when the complex was dispersed in the cationic chitosan gel, possibly due to oxi-redox reactions between the amino groups of the polymer and the drug molecule. Finally, the non-ionic gel released the NO after light irradiation to the same extent as a drug aqueous solution at the same pH. The drug dispersed in this gel also penetrated into the stratum corneum skin layer, and the nitro-ruthenium complex present in the skin was able to release the NO after light stimuli, suggesting the potential use of this formulation as a topical NO delivery system. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose: Benznidazole (Bz) is the therapy currently available for clinical treatment of Chagas` disease. However, many strains of Trypanosoma cruzi parasites are naturally resistant. Nitric oxide (NO) produced by activated macrophages is crucial to the intracellular killing of parasites. Here, we investigate the in vitro and in vivo activities against T. cruzi, of the NO donor, trans-[RuCl([15]aneN(4))NO]2+. Experimental approach: Trans-[RuCl([15]aneN(4))NO]2+ was incubated with a partially drug-resistant T. cruzi Y strain and the anti-proliferative (epimastigote form) and trypanocidal activities (trypomastigote and amastigote) evaluated. Mice were treated during the acute phase of Chagas` disease. The anti-T. cruzi activity was evaluated by parasitaemia, survival rate, cardiac parasitism, myocarditis and the curative rate. Key results: Trans-[RuCl([15]aneN(4))NO]2+ was 10- and 100-fold more active than Bz against amastigotes and trypomastigotes respectively. Further, trans-[RuCl([15]aneN(4))NO]2+ (0.1 mM) induced 100% of trypanocidal activity (trypomastigotes forms) in vitro. Trans-[RuCl([15]aneN(4))NO]2+ induced permanent suppression of parasitaemia and 100% survival in a murine model of acute Chagas` disease. When the drugs were given alone, parasitological cures were confirmed in only 30 and 40% of the animals treated with the NO donor (3.33 mu mol center dot kg-1 center dot day-1) and Bz (385 mu mol center dot kg-1 center dot day-1), respectively, but when given together, 80% of the animals were parasitologically cured. The cured animals showed an absence of myocarditis and a normalisation of cytokine production in the sera. In addition, no in vitro toxicity was observed at the tested doses. Conclusions and implications: These findings indicate that trans-[RuCl([15]aneN(4))NO]2+ is a promising lead compound for the treatment of human Chagas` disease. This article is commented on by Machado et al., pp. 258-259 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00662.x and to view a related paper in this issue by Silva et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00524.x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the effects of chronic methionine intake on bradykinin (BK)-relaxation. Vascular reactivity experiments were performed on carotid rings from male Wistar rats. Treatment with methionine (0.1, 1 or 2 g kg(-1) per day) for 8 and 16 weeks, but not for 2 and 4 weeks, reduced the relaxation induced by BK. Indomethacin, a non-selective cyclooxygenase (COX) inhibitor, and SQ29548, a selective thromboxane A(2) (TXA(2))/prostaglandin H(2) (PGH(2)) receptor antagonist prevented the reduction in BK-relaxation observed in the carotid from methionine-treated rats. Conversely, AH6809, a selective prostaglandin F(2 alpha) (PGF(2 alpha)) receptor antagonist did not alter BK-relaxation in the carotid from methionine-treated rats. The nitric oxide synthase (NOS) inhibitors L-NAME, L-NNA and 7-nitroindazole reduced the relaxation induced by BK in carotids from control and methionine-treated rats. In summary, we found that chronic methionine intake impairs the endothelium-dependent relaxation induced by BK and this effect is due to an increased production of endothelial vasoconstrictor prostanoids (possibly TXA(2)) that counteracts the relaxant action displayed by the peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new nitrosyl ruthenium complex [Ru(NH center dot NHq)(terpy)NO](3+) nitric oxide donor was recently developed and due to its excellent vasodilator activity, it has been considered as a potential drug candidate. Drug metabolism is one of the main parameters that should be evaluated in the early drug development, so the biotransformation of this complex by rat hepatic microsomes was investigated. In order to perform the biotransformation study, a simple, sensitive and selective HPLC method was developed and carefully validated. The parameters evaluated in the validation procedure were: linearity, recovery, precision, accuracy, selectivity and stability. Except for the stability study, all the parameters evaluated presented values below the recommended by FDA guidelines. The stability study showed a time-dependent degradation profile. After method validation, the biotransformation study was accomplished and the kinetic parameters were determined. The biotransformation study obeyed the Michaelis-Menten kinetics. The V(max) and K(m) were, respectively, 0.1625 +/- 0.010 mu mol/mg protein/min and 79.97 +/- 11.52 mu M. These results indicate that the nitrosyl complex is metabolized by CYP450. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under continuous photolysis at 675 nm, liposomal zinc phthalocyanine associated with nitrosyl ruthenium complex [Ru(NH.NHq)(tpy)NO](3+) showed the detection and quantification of nitric oxide (NO) and singlet oxygen ((1)O(2)) release. Photophysical and photochemical results demonstrated that the interaction between the nitrosyl ruthenium complex and the photosensitizer can enable an electron transfer process from the photosensitizer to the nitrosyl ruthenium complex which leads to NO release. Synergistic action of both photosensitizers and the nitrosyl ruthenium complex results in the production of reactive oxygen species and reactive nitrogen species, which is a potent oxidizing agent to many biological tissues, in particular neoplastic cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have described a new compound (trans-[RuCl([15]ane N(4))NO](2+)), which in vitro releases NO by the action of a reducing agent such as catecholamines. We investigated the effect of this NO donor in lowering the mean arterial pressure (MAP) in severe and moderate renal hypertensive 2K-1C rats. MAP was measured before and after intravenous in bolus injection of the compound in conscious 2K-1C and normotensive (2K) rats. In the hypertensive rats (basal 196.70 +/- 8.70 mmHg, n=5), the MAP was reduced in -34.25 +/- 13.50 mmHg(P < 0.05) 6 h after administration of 10 mmol/L/Kg of the compound in bolus. In normotensive rats the compound had no effect. We have also studied the effect of the injection of 0.1 mmol/L/Kg in normotensive (basal 118.20 +/- 11.25 mmHg, n = 4), moderate (basal 160.90 +/- 2.30 mmHg, n = 6), and severe hypertensive rats (basal 202.46 +/- 16.74 mmHg, n = 6). The compound at the dose of 0.1 mmol/L/Kg did not have effect (P> 0.05) on MAP of normotensive and moderate hypertensive rats. However, in the severe hypertensive rats (basal 202.46 +/- 16.70 mmHg, n = 6) there was a significant reduction on the MAP of -28.64 +/- 12.45 mmHg. The NO donor reduced the MAP of all hypertensive rats in the dose of 10 mmol/L/Kg and in the severe hypertensive rats at the dose of 0.1 mmol/L/Kg. The compound was not cytotoxic to the rat aortic vascular smooth muscle cells in the concentration of 0.1 mmol/LKg that produced the maximum relaxation. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) in NTS plays an important role in regulating autonomic function to the cardiovascular system. Using the fluorescent dye DAF-2 DA, we evaluated the NO concentration in NTS. Brainstem slices of rats were loaded with DAF-2 DA, washed, fixed in paraformaldehyde and examined under fluorescent light. In different experimental groups, NTS slices were pre-incubated with 1 mM L-NAME (a non-selective NOS inhibitor), 1 MM D-NAME (an inactive enantiomere of L-NAME), 1 mM kynurenic acid (a nonselective ionotropic receptors antagonist) or 20 mu M bicuculline (a selective GABA(A) receptors antagonist) before and during DAF-2 DA loading. Images were acquired using a confocal microscope and the intensity of fluorescence was quantified in three antero-posterior NTS regions. In addition, slices previously loaded with DAF-2 DA were incubated with NeuN or GFAP antibody. A semi-quantitative analysis of the fluorescence intensity showed that the basal NO concentration was similar in all antero-posterior aspects of the NTS (rostral intermediate, 15.5 +/- 0.8 AU: caudal intermediate, 13.2 +/- 1.4 AU; caudal commissural, 13.8 +/- 1.4 AU, n = 10). In addition, the inhibition of NOS and the antagonism of glutamatergic receptors decreased the NO fluorescence in the NTS. On the other hand, D-NAME did not affect the NO fluorescence and the antagonism of GABAA receptors increased the NO fluorescence in the NTS. It is important to note that the fluorescence for NO was detected mainly in neurons. These data show that the fluorescence observed after NTS loading with DAF-2 DA is a result of NO present in the NTS and support the concept that NTS neurons have basal NO production which is modulated by L-glutamate and GABA. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ruthenium nitrosyl complex trans-[Ru(NO)(NH(3))(4)(py)](PF(6))(3) (pyNO), a nitric oxide (NO) donor, was studied in regard to the release of NO and its impact both on isolated mitochondria and HepG2 cells. In isolated mitochondria, NO release from pyNO was concomitant with NAD(P)H oxidation and, in the 25-100 mu M range, it resulted in dissipation of mitochondrial membrane potential, inhibition of state 3 respiration, ATP depletion and reactive oxygen species (ROS) generation. In the presence of Ca(2+), mitochondrial permeability transition (MPT), an unspecific membrane permeabilization involved in cell necrosis and some types of apoptosis, was elicited. As demonstrated by externalization of phosphatidylserine and activation of caspase-9 and caspase-3, pyNO (50-100 mu M) induced HepG2 cell death, mainly by apoptosis. The combined action of the NO itself, the peroxynitrite yielded by NO in the presence of reactive oxygen species (ROS) and the oxidative stress generated by the NAD(P)H oxidation is proposed to be involved in cell death by pyNO, both via respiratory chain inhibition and ROS levels increase, or even via MPT, if Ca(2+) is present. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some studies have recently suggested that mercury (Hg)-exposed populations face increased risks of cardiovascular diseases, and experimental data indicate that such risks might be due to reductions in nitric oxide bioavailability. However, no previous study has examined whether Hg exposure affects plasma nitrite concentrations in humans as an indication of nitric oxide production. Here, we investigated whether there is an association between circulating nitrite and Hg concentrations in whole blood, plasma and hair from an exposed methylmercury (MeHg) population. Hair and blood samples were collected from 238 persons exposed to MeHg from fish consumption. Hg concentrations in plasma (PHg), whole blood (BHg) and hair Hg (HHg) were determined by inductively coupled plasma-mass spectrometry. Mean BHg content was 49.8 +/- 35.2 mu g/l, mean PHg was 7.8 +/- 6.9 mu g/l and HHg 14.6 +/- 10.6 mu g/g. Mean plasma nitrite concentration was 253.2 +/- 105.5 nM. No association was found between plasma nitrite concentration and BHg or HHg concentrations in a univariate model. However, multiple regression models adjusted for gender, age and fish consumption showed a significant association between plasma nitrite and plasma Hg concentration (beta = -0.1, p < 0.001). Our findings constitute preliminary clinical evidence that exposure to MeHg may cause inhibitory effects on the production of endothelial nitric oxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 mu g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r = -0.67; P = 0.001), and a positive correlation between MDA and systolic blood pressure (r = 0.61; P = 0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Very few studies have investigated, in the elderly, the effect of rheumatic inflammatory states on phagocyte function and free radical production. The objective of this article is to evaluate phagocytosis by neutrophils and the production of nitric oxide (.NO) by monocytes in elderly women recruited among patients of the Brazilian Public Health System. Methods: Forty patients aged more than 60 years with rheumatic inflammatory diseases were studied. Phagocytosis was measured by flow cytometry. .NO production was measured by the total nitrite assay and conventional inflammation markers were determined. Data were analyzed with the Mann Whitney nonparametric test and P<0.05 was considered significant. Results. C-reactive protein levels and white blood cell counts were significantly higher in inflammation than in the control group (P<0.05). The phagocytosis fluorescence intensity per neutrophil and the percentual of neutrophils expressing phagocytosis were significantly higher (P<0.05) in the test than in the control group. Furthermore, there was significant .NO overproduction by monocytes, (P<0.05). Conclusion: Phagocytosis and .NO production are affected by rheumatic states. This suggests that the increased .NO levels may play a part in the increased oxidative stress in rheumatic diseases in elderly women. J. Clin. Lab. Anal. 25:47-51, 2011. (C) 2011 Wiley-Liss, Inc.