824 resultados para PROTECTED AREAS
Resumo:
Monitoring is essential for conservation of sites, but capacity to undertake it in the field is often limited. Data collected by remote sensing has been identified as a partial solution to this problem, and is becoming a feasible option, since increasing quantities of satellite data in particular are becoming available to conservationists. When suitably classified, satellite imagery can be used to delineate land cover types such as forest, and to identify any changes over time. However, the conservation community lacks (a) a simple tool appropriate to the needs for monitoring change in all types of land cover (e.g. not just forest), and (b) an easily accessible information system which allows for simple land cover change analysis and data sharing to reduce duplication of effort. To meet these needs, we developed a web-based information system which allows users to assess land cover dynamics in and around protected areas (or other sites of conservation importance) from multi-temporal medium resolution satellite imagery. The system is based around an open access toolbox that pre-processes and classifies Landsat-type imagery, and then allows users to interactively verify the classification. These data are then open for others to utilize through the online information system. We first explain imagery processing and data accessibility features, and then demonstrate the toolbox and the value of user verification using a case study on Nakuru National Park, Kenya. Monitoring and detection of disturbances can support implementation of effective protection, assist the work of park managers and conservation scientists, and thus contribute to conservation planning, priority assessment and potentially to meeting monitoring needs for Aichi target 11.
Resumo:
This study investigated how harvest and water management affected the ecology of the Pig Frog, Rana grylio. It also examined how mercury levels in leg muscle tissue vary spatially across the Everglades. Rana grylio is an intermediate link in the Everglades food web. Although common, this inconspicuous species can be affected by three forms of anthropogenic disturbance: harvest, water management and mercury contamination. This frog is harvested both commercially and recreationally for its legs, is aquatic and thus may be susceptible to water management practices, and can transfer mercury throughout the Everglades food web. ^ This two-year study took place in three major regions: Everglades National Park (ENP), Water Conservation Areas 3A (A), and Water Conservation Area 3B (B). The study categorized the three sites by their relative harvest level and hydroperiod. During the spring of 2001, areas of the Everglades dried completely. On a regional and local scale Pig Frog abundance was highest in Site A, the longest hydroperiod, heavily harvested site, followed by ENP and B. More frogs were found along survey transects and in capture-recapture plots before the dry-down than after the dry-down in Sites ENP and B. Individual growth patterns were similar across all sites, suggesting differences in body size may be due to selective harvest. Frogs from Site A, the flooded and harvested site, had no differences in survival rates between adults and juveniles. Site B populations shifted from a juvenile to adult dominated population after the dry-down. Dry-downs appeared to affect survival rates more than harvest. ^ Total mercury in frog leg tissue was highest in protected areas of Everglades National Park with a maximum concentration of 2.3 mg/kg wet mass where harvesting is prohibited. Similar spatial patterns in mercury levels were found among pig frogs and other wildlife throughout parts of the Everglades. Pig Frogs may be transferring substantial levels of mercury to other wildlife species in ENP. ^ In summary, although it was found that abundance and survival were reduced by dry-down, lack of adult size classes in Site A, suggest harvest also plays a role in regulating population structure. ^
Resumo:
Amphibian populations are declining even in pristine areas in many parts of the world, and in the Neotropics most such enigmatic amphibian declines have occurred in mid- to high-elevation sites. However, amphibian populations have also declined at La Selva Biological Station in the lowlands of Costa Rica, and similar declines in populations of lizards have occurred at the site as well. To set the stage for describing amphibian declines at La Selva, I thoroughly review knowledge of amphibian decline and amphibian conservation in Central America: I describe general patterns in biodiversity, evaluate major patterns in and ecological correlates of threat status, review trends in basic and applied conservation literature, and recommend directions for future research. I then synthesize data on population densities of amphibians, as well as ecologically similar reptiles, over a 35-year periods using quantitative datasets from a range of studies. This synthesis identifies assemblage-wide declines of approximately 75% for both amphibians and reptiles between 1970 and 2005. Because these declines defy patterns most commonly reported in the Neotropics, it is difficult to assess causality evoking known processes associated with enigmatic decline events. I conduct a 12-month pathogen surveillance program to evaluate infection of frogs by the amphibian chytrid fungus, an emerging pathogen linked to decline events worldwide Although lowland forests are generally believed to be too warm for presence or adverse population effects of chytridiomycosis, I present evidence for seasonal patterns in infection prevalence with highest prevalence in the coolest parts of the year. Finally, I conducted a 16-month field experiment to explore the role of changes to dynamics of leaf litter, a critical resource for both frogs and lizards. Population responses by frogs and lizards indicate that litter regulates population densities of frogs and lizards, particularly those species with the highest decline rate. My work illustrates that sites that are assumed to be pristine are likely impacted by a variety of novel stressors, and that even fauna within protected areas may be suffering unexpected declines.
Resumo:
A growing human population, shifting human dietary habits, and climate change are negatively affecting global ecosystems on a massive scale. Expanding agricultural areas to feed a growing population drives extensive habitat loss, and climate change compounds stresses on both food security and ecosystems. Understanding the negative effects of human diet and climate change on agricultural and natural ecosystems provides a context within which potential technological and behavioral solutions can be proposed to help maximize conservation. The purpose of this research was to (1) examine the potential effects of climate change on the suitability of areas for commercial banana plantations in Latin America in the 2050s and how shifts in growing areas could affect protected areas; (2) test the ability of small unmanned aerial vehicles (UAVs) to map productivity of banana plantations as a potential tool for increasing yields and decreasing future plantation expansions; (3) project the effects on biodiversity of increasing rates of animal product consumption in developing megadiverse countries; and (4) estimate the capacity of global pasture biomass production and Fischer-Tropsch hydrocarbon synthesis (IGCC-FT) processing to meet electricity, gasoline and diesel needs. The results indicate that (1) the overall extent of areas suitable for conventional banana cultivation is predicted to decrease by 19% by 2050 because of a hotter and drier climate, but all current banana exporting countries are predicted to maintain some suitable areas with no effects on protected areas; (2) Spatial patterns of NDVI and ENDVI were significantly positively correlated with several metrics of fruit yield and quality, indicating that UAV systems can be used in banana plantations to map spatial patterns of fruit yield; (3) Livestock production is the single largest driver of habitat loss, and both livestock and feedstock production are increasing in developing biodiverse tropical countries. Reducing global animal product consumption should therefore be at the forefront of strategies aimed at reducing biodiversity loss; (4) Removing livestock from global pasture lands and instead utilizing the biomass production could produce enough energy to meet 100% of the electricity, gasoline, and diesel needs of over 40 countries with extensive grassland ecosystems, primarily in tropical developing countries.
Resumo:
Two protected areas: Royal Bardia National Park (RBNP) and Royal Suklaphanta Wildlife Reserve (RSWR) in the Western Terai, Nepal, are under threats due to present political turmoil, uncontrolled immigration, inefficient land reform policies and unsustainable resource use. I did a stratified random questionnaire survey of 234 households to determine how resource use patterns and problems influence conservation attitudes. Chi-square, Student's t, Mann-Whitney and Kruskal-Wallis tests, and multiple regression were used. There was spatio-temporal variability in resource use patterns and dependency. People were collecting eight and seven types of resources in RBNP and RSWR, respectively. However, people in RBNP were more dependent on resources than RSWR. In both areas, the problem of firewood is serious. The mean attitude score of RBNP (8.4 ± 1.44) was significantly higher than the score of RSWR (7.7 ± 1.66; t = 3.24, p = 0.0007). Conservation attitude was determined by variables such as participation in trainings, wildlife damage, and satisfaction towards user groups.
Resumo:
Environmental degradation is a global problem that particularly affects areas subject to seasonal climatic variations, such as the brazilian semiarid region, namely the Caatinga Domain. Combined with other negative factors, such as natural resource misuse and disorderly land occupation, the consequences of Environmental Degradation have challenged science in the quest for addressing the resulting social and environmental problems. Accordingly, Environmental Perception methodology, by analyzing the concepts, attitudes and values, (especially those pertaining to environmental conservation) represent an important tool in studies that address the relationship between the environment and human actions. Sustainability Indicators are also relevant tools to assess the possible causes and consequences of environmental problems. Among several Sustainability Indicators available, the PressuresState-Impact-Response (PSIR) method is an analytical tool that permits the grouping of factors affecting sustainability as well as their consequences for nature and human health, and thus indicate mitigating actions for society and the public authorities. From this perspective, three areas of Caatinga were studied in Rio Grande do Norte state: Seridó Ecological Station (ESEC), Municipality of Serra Negra do Norte; Private Natural Reserve Stoessel de Brito (PNRSB), Municipality of Jucurutu; and part of the Serra de Santana, Municipality of Tenente Laurentino Cruz. The areas are both legally protected and unprotected and subject to diferent management protocols, though their share the common characteristic of human misuse of natural resources. In this scenario, this thesis´ main goal was to introduce the rural communities into the conservation process, using the results of Environmental Perception of such communities, combined with the analysis of the sustainability of municipalities through PSIR. Information on Environmental Perception was obtained from primary and secondary data from previous studies carried out in the ESEC Seridó and PRNP Stoessel de Brito. Additional data was obtained through direct observation and interview forms applied to rural communities in the Municipality of Tenente Laurentino Cruz. The results showed that respondents possessed a broad knowledge regarding environmental degradation, its causes and consequences for the caatinga biome. PEIR analysis showed that environmental degradation was smaller in countries with protected areas, as compared to those without. The population´s knowledge about environmental degradation and their acceptance of conservation units, as showed by Environmental Perception Analysis, coupled with the results of PEIR, suggest that those attitudes may foster actions aimed at reduction of environmental degradation in the Caatinga domain
Resumo:
The Área de Proteção Ambiental de Jenipabu was created by Decreto 12,620/95, covering the beaches of Redinha Nova, Santa Rita and Jenipabu and Campina communities in the municipality of Extremoz, and Africa community fragment, in Natal. This protected area was created in the context of expansion of tourism in Rio Grande do Norte, in the 1990s, in which PRODETUR investments made possible the installation of infrastructure equipment, mainly in the Via Costeira and Ponta Negra beach in Natal by inserting it in the sun and sea tourism route to Northeast Brazil. In this context the beach Jenipabu in Extremoz, became one of the main attractions for those visiting Natal, due to the natural elements of its landscape, its dune field, which is offered to tourists the buggy ride. In December 1994 the excess buggy rides held in these dunes led to IBAMA ban their access to buggy for carrying out environmental study. This measure resulted in the creation of APAJ in 1995 with the goal of ordering the use and occupation to protect its ecosystems, especially the dunes, the disordered tourism. Given this context, this work aims to analyze the process of creating the APAJ and changes in the geographic space of its beaches, Redinha Nova, Santa Rita and Jenipabu, from the materialization of tourism process, as well as their implications for its residents. To this end, this paper presents a discussion of environmental currents that developed in the western portion of the globe, focusing on the need to regulate small areas of the national territory in protected areas, and an analysis of public policies that enabled the implementation tourism in APAJ as well as the laws and decrees governing the process of creation and management. Using the theory of circuits of urban economy of the Santos (2008) to analyze the territory used by tourism on the beaches of Redinha Nova, Santa Rita and Jenipabu, showing their dependent relationship with the territory used by the upper circuit on the Via Costeira and in the Ponta Negra beach and its influence on the APAJ urbanization process. Ending with the analysis of the influence of the materialization of tourism in the transformation of stocks ways of being-in-space and space-be of the Santa Rita and Jenipabu beaches in each geographical situation of APAJ among the first decades of the twentieth century to the 2014. Fieldwork was conducted between 2012 and 2014, performing actions of qualitative interviews with older residents of Santa Rita and Jenipabu beaches, interviews with structured questionnaire with merchants of APAJ and collecting GPS points trades, identifying and mapping the territory used by the lower circuit in APAJ beaches.
Resumo:
Capparaceae comprises 25 genera and 480 species, of which 110 are included in 18 genera in Neotropics. Its distribution is pantropical with high frequency in seasonally dry environments. Its representatives are woody, shrubs and rarely wines, with simple leave or compound 3-foliolate, shorts and deciduous floral bracts, tetramerous and nocturnal flowers with exserts and numerous stamens, ovary supero on a gynophore and fleshy fruits, dehiscents or indehiscentes. For Brazil, 12 genera and 28 species are recorded and 12 of that are endemic to the country, occurring preferentially in vegetation of savanna estépica s.str., seasonal semideciduos forest and restinga. This work shows two chapters. In the first chapter, the distributions patterns of the species occurring in the brazilian semi-arid region and their distribution intra Caatinga are discussed. The distribution patterns were determined from a review of the distribution of species in herbaria collections and supplemented with data obtained from specific bibliography about the family. A map containing 1 × 1 grid cells was used to evaluate the richness, collection efforts and floristic similarity of the species intra Caatinga. Six genera and eight species were registered in Caatinga. Four species are endemic to Brazil, with only one endemic to Caatinga, and the other four are widespread in Neotropics. Four distribution patterns were observed: restricted to the NE, broad and continuous in Brazil, disjunct and neotropical. All the species were recorded in Bahia, state with the highest species richness per grid cell and also remarkable sampling efforts species of the family. The state of Piauí presents priority areas for further collection of Capparaceae, due to low family representation in the state. The floristic similarity analysis intra Caatinga was low, 22 %, probably due to a few species of the family in the region and the wide distribution of the same. The second chapter presents the Capparaceae of flora to Rio Grande do Norte (RN), since the state has a little-known flora, with specific studies. Through collections in the state and herbaria review, five genera and six species of Capparaceae were recorded in RN: Capparidastrum (1 spp.); Crateva (1 spp.); Cynophalla (2 spp.); Mesocapparis (1 spp.) and Neocalyptrocalyx (1 spp.). Capparidastrum frondosum and Mesocapparis lineata are new records for the state. An identification key, descriptions and images, comments on the biology of the species and protected areas where they occur are showed.
Resumo:
Conservation of large felids is not only about collecting ecological information; it is also about understanding people’s values, beliefs, attitudes and behaviour. The overarching goal of this thesis is to assess the relationship between people and jaguars and pumas. Specifically by contributing to the understanding of public acceptance of big cats, as well as the forces (cognitive and social) that influence people’s acceptability. Self-administered questionnaires (n=326) were applied to rural residents outside two protected areas in the State of Sao Paulo: Intervales and PETAR state parks. Findings showed that the acceptability of killing big cats varied accordingly to attitudinal type (positive and negative). Additionally, acceptability of jaguars and pumas was influenced by existence values, attitudes and park credibility. Human dimensions research helped in understanding the relationship between people and the big cats, highlighting the need, for example, to improve the credibility of the parks in the communities and to decrease the fear of jaguars and pumas.
Resumo:
Shorebirds have declined severely across the East Asian-Australasian Flyway. Many species rely on intertidal habitats for foraging, yet the distribution and conservation status of these habitats across Australia remain poorly understood. Here, we utilised freely available satellite imagery to produce the first map of intertidal habitats across Australia. We estimated a minimum intertidal area of 9856 km**2, with Queensland and Western Australia supporting the largest areas. Thirty-nine percent of intertidal habitats were protected in Australia, with some primarily within marine protected areas (e.g. Queensland) and others within terrestrial protected areas (e.g. Victoria). In fact, three percent of all intertidal habitats were protected both by both marine and terrestrial protected areas. To achieve conservation targets, protected area boundaries must align more accurately with intertidal habitats. Shorebirds use intertidal areas to forage and supratidal areas to roost, so a coordinated management approach is required to account for movement of birds between terrestrial and marine habitats. Ultimately, shorebird declines are occurring despite high levels of habitat protection in Australia. There is a need for a concerted effort both nationally and internationally to map and understand how intertidal habitats are changing, and how habitat conservation can be implemented more effectively.
Resumo:
The authors would like to thank the leadership of the Deep Ocean Stewardship Initiative (DOSI), including Lisa Levin, Maria Baker, and Kristina Gjerde, for their support in developing this review. This work evolved from a meeting of the DOSI Oil and Gas working group supported by the J.M. Kaplan Fund, and associated with the Deep-Sea Biology Symposium in Aveiro, Portugal in September 2015. The members of the Oil and Gas working group that contributed to our discussions at that meeting or through the listserve are acknowledged for their contributions to this work. We would also like to thank the three reviewers and the editor who provided valuable comments and insight into the work presented here. DJ and AD were supported by funding from the European Union's Horizon 2020 research and innovation programme under the MERCES (Marine Ecosystem Restoration in Changing European Seas) project, grant agreement No 689518. AB was supported by CNPq grants 301412/2013-8 and 200504/2015-0. LH acknowledges funding provided by a Natural Environment Research Council grant (NE/L008181/1). This output reflects only the authors' views and the funders cannot be held responsible for any use that may be made of the information contained therein.
Resumo:
Habitat loss, fragmentation, and degradation threaten the World’s ecosystems and species. These, and other threats, will likely be exacerbated by climate change. Due to a limited budget for conservation, we are forced to prioritize a few areas over others. These places are selected based on their uniqueness and vulnerability. One of the most famous examples is the biodiversity hotspots: areas where large quantities of endemic species meet alarming rates of habitat loss. Most of these places are in the tropics, where species have smaller ranges, diversity is higher, and ecosystems are most threatened.
Species distributions are useful to understand ecological theory and evaluate extinction risk. Small-ranged species, or those endemic to one place, are more vulnerable to extinction than widely distributed species. However, current range maps often overestimate the distribution of species, including areas that are not within the suitable elevation or habitat for a species. Consequently, assessment of extinction risk using these maps could underestimate vulnerability.
In order to be effective in our quest to conserve the World’s most important places we must: 1) Translate global and national priorities into practical local actions, 2) Find synergies between biodiversity conservation and human welfare, 3) Evaluate the different dimensions of threats, in order to design effective conservation measures and prepare for future threats, and 4) Improve the methods used to evaluate species’ extinction risk and prioritize areas for conservation. The purpose of this dissertation is to address these points in Colombia and other global biodiversity hotspots.
In Chapter 2, I identified the global, strategic conservation priorities and then downscaled to practical local actions within the selected priorities in Colombia. I used existing range maps of 171 bird species to identify priority conservation areas that would protect the greatest number of species at risk in Colombia (endemic and small-ranged species). The Western Andes had the highest concentrations of such species—100 in total—but the lowest densities of national parks. I then adjusted the priorities for this region by refining these species ranges by selecting only areas of suitable elevation and remaining habitat. The estimated ranges of these species shrank by 18–100% after accounting for habitat and suitable elevation. Setting conservation priorities on the basis of currently available range maps excluded priority areas in the Western Andes and, by extension, likely elsewhere and for other taxa. By incorporating detailed maps of remaining natural habitats, I made practical recommendations for conservation actions. One recommendation was to restore forest connections to a patch of cloud forest about to become isolated from the main Andes.
For Chapter 3, I identified areas where bird conservation met ecosystem service protection in the Central Andes of Colombia. Inspired by the November 11th (2011) landslide event near Manizales, and the current poor results of Colombia’s Article 111 of Law 99 of 1993 as a conservation measure in this country, I set out to prioritize conservation and restoration areas where landslide prevention would complement bird conservation in the Central Andes. This area is one of the most biodiverse places on Earth, but also one of the most threatened. Using the case of the Rio Blanco Reserve, near Manizales, I identified areas for conservation where endemic and small-range bird diversity was high, and where landslide risk was also high. I further prioritized restoration areas by overlapping these conservation priorities with a forest cover map. Restoring forests in bare areas of high landslide risk and important bird diversity yields benefits for both biodiversity and people. I developed a simple landslide susceptibility model using slope, forest cover, aspect, and stream proximity. Using publicly available bird range maps, refined by elevation, I mapped concentrations of endemic and small-range bird species. I identified 1.54 km2 of potential restoration areas in the Rio Blanco Reserve, and 886 km2 in the Central Andes region. By prioritizing these areas, I facilitate the application of Article 111 which requires local and regional governments to invest in land purchases for the conservation of watersheds.
Chapter 4 dealt with elevational ranges of montane birds and the impact of lowland deforestation on their ranges in the Western Andes of Colombia, an important biodiversity hotspot. Using point counts and mist-nets, I surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. I compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analyzing the effect of deforestation on 134 species, I tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.
In Chapter 5, I refine the ranges of 726 species from six biodiversity hotspots by suitable elevation and habitat. This set of 172 bird species for the Atlantic Forest, 138 for Central America, 100 for the Western Andes of Colombia, 57 for Madagascar, 102 for Sumatra, and 157 for Southeast Asia met the criteria for range size, endemism, threat, and forest use. Of these 586 species, the Red List deems 108 to be threatened: 15 critically endangered, 29 endangered, and 64 vulnerable. When ranges are refined by elevational limits and remaining forest cover, 10 of those critically endangered species have ranges < 100km2, but then so do 2 endangered species, seven vulnerable, and eight non-threatened ones. Similarly, 4 critically endangered species, 20 endangered, and 12 vulnerable species have refined ranges < 5000km2, but so do 66 non-threatened species. A striking 89% of these species I have classified in higher threat categories have <50% of their refined ranges inside protected areas. I find that for 43% of the species I assessed, refined range sizes fall within thresholds that typically have higher threat categories than their current assignments. I recommend these species for closer inspection by those who assess risk. These assessments are not only important on a species-by-species basis, but by combining distributions of threatened species, I create maps of conservation priorities. They differ significantly from those created from unrefined ranges.
Resumo:
Antillean manatees (Trichechus manatus manatus) were heavily hunted in the past throughout the Wider Caribbean Region (WCR), and are currently listed as endangered on the IUCN Red List of Threatened Species. In most WCR countries, including Haiti and the Dominican Republic, remaining manatee populations are believed to be small and declining, but current information is needed on their status, distribution, and local threats to the species.
To assess the past and current distribution and conservation status of the Antillean manatee in Hispaniola, I conducted a systematic review of documentary archives dating from the pre-Columbian era to 2013. I then surveyed more than 670 artisanal fishers from Haiti and the Dominican Republic in 2013-2014 using a standardized questionnaire. Finally, to identify important areas for manatees in the Dominican Republic, I developed a country-wide ensemble model of manatee distribution, and compared modeled hotspots with those identified by fishers.
Manatees were historically abundant in Hispaniola, but were hunted for their meat and became relatively rare by the end of the 19th century. The use of manatee body parts diversified with time to include their oil, skin, and bones. Traditional uses for folk medicine and handcrafts persist today in coastal communities in the Dominican Republic. Most threats to Antillean manatees in Hispaniola are anthropogenic in nature, and most mortality is caused by fisheries. I estimated a minimum island-wide annual mortality of approximately 20 animals. To understand the impact of this level of mortality, and to provide a baseline for measuring the success of future conservation actions, the Dominican Republic and Haiti should work together to obtain a reliable estimate of the current population size of manatees in Hispaniola.
In Haiti, the survey of fishers showed a wider distribution range of the species than suggested by the documentary archive review: fishers reported recent manatee sightings in seven of nine coastal departments, and three manatee hotspot areas were identified in the north, central, and south coasts. Thus, the contracted manatee distribution range suggested by the documentary archive review likely reflects a lack of research in Haiti. Both the review and the interviews agreed that manatees no longer occupy freshwater habitats in the country. In general, more dedicated manatee studies are needed in Haiti, employing aerial, land, or boat surveys.
In the Dominican Republic, the documentary archive review and the survey of fishers showed that manatees still occur throughout the country, and occasionally occupy freshwater habitats. Monte Cristi province in the north coast, and Barahona province in the south coast, were identified as focal areas. Sighting reports of manatees decreased from Monte Cristi eastwards to the adjacent province in the Dominican Republic, and westwards into Haiti. Along the north coast of Haiti, the number of manatee sighting and capture reports decreased with increasing distance to Monte Cristi province. There was good agreement among the modeled manatee hotspots, hotspots identified by fishers, and hotspots identified during previous dedicated manatee studies. The concordance of these results suggests that the distribution and patterns of habitat use of manatees in the Dominican Republic have not changed dramatically in over 30 years, and that the remaining manatees exhibit some degree of site fidelity. The ensemble modeling approach used in the present study produced accurate and detailed maps of manatee distribution with minimum data requirements. This modeling strategy is replicable and readily transferable to other countries in the Caribbean or elsewhere with limited data on a species of interest.
The intrinsic value of manatees was stronger for artisanal fishers in the Dominican Republic than in Haiti, and most Dominican fishers showed a positive attitude towards manatee conservation. The Dominican Republic is an upper middle income country with a high Human Development Index. It possesses a legal framework that specifically protects manatees, and has a greater number of marine protected areas, more dedicated manatee studies, and more manatee education and awareness campaigns than Haiti. The constant presence of manatees in specific coastal segments of the Dominican Republic, the perceived decline in the number of manatee captures, and a more conservation-minded public, offer hope for manatee conservation, as non-consumptive uses of manatees become more popular. I recommend a series of conservation actions in the Dominican Republic, including: reducing risks to manatees from harmful fishing gear and watercraft at confirmed manatee hotspots; providing alternative economic alternatives for displaced fishers, and developing responsible ecotourism ventures for manatee watching; improving law enforcement to reduce fisheries-related manatee deaths, stop the illegal trade in manatee body parts, and better protect manatee habitat; and continuing education and awareness campaigns for coastal communities near manatee hotspots.
In contrast, most fishers in Haiti continue to value manatees as a source of food and income, and showed a generally negative attitude towards manatee conservation. Haiti is a low income country with a low Human Development Index. Only a single dedicated manatee study has been conducted in Haiti, and manatees are not officially protected. Positive initiatives for manatees in Haiti include: protected areas declared in 2013 and 2014 that enclose two of the manatee hotspots identified in the present study; and local organizations that are currently working on coastal and marine environmental issues, including research and education on marine mammals. Future conservation efforts for manatees in Haiti should focus on addressing poverty and providing viable economic alternatives for coastal communities. I recommend a community partnership approach for manatee conservation, paired with education and awareness campaigns to inform coastal communities about the conservation situation of manatees in Haiti, and to help change their perceived value. Haiti should also provide legal protection for manatees and their habitat.
Grain size distribution of the lagoonal deposits within the South Malé Atoll, Maldives, Indian Ocean
Resumo:
Seismic and multibeam data, as well as sediment samples were acquired in the South Malé Atoll in the Maldives archipelago in 2011 to unravel the stratigraphy and facies of the lagoonal deposits. Multichannel seismic lines show that the sedimentary succession locally reaches a maximum thickness of 15-20 m above an unconformity interpreted as the emersion surface which developed during the last glacial sea-level lowstand. Such depocenters are located in current-protected areas flanking the reef rim of the atoll or in infillings of karst dolinas. Much of the 50 m deep sea floor in the lagoon interior is current swept, and has no or very minor sediment cover. Erosive current moats line drowned patch reefs, whereas other areas are characterized by nondeposition. Karst sink holes, blue holes and karst valleys occur throughout the lagoon, from its rim to its center. Lagoonal sediments are mostly carbonate rubble and coarse-grained carbonate sands with frequent large benthic foraminifers, Halimeda flakes, red algal nodules, mollusks, bioclasts, and intraclasts, some of them glauconitic, as well as very minor ooids. Finer-grained deposits locally are deposited in current-protected areas behind elongated faros, i.e., small atolls which are part of the rim of South Malé Atoll. The South Malé Atoll is a current-flushed atoll, where water and sediment export with the open sea is facilitated by the multiple passes dissecting the atoll rim. With an elevated reef rim and tower-like reefs in the atoll interior it is an example of a leaky bucket atoll which shares characteristics of incipiently drowned carbonate banks or drowning sequences as known from the geological record.
Resumo:
En este artículo presentamos un balance de la Antropología de la Conservación en el Estado español. Durante las últimas décadas, la protección de los espacios naturales ha aumentado de una manera exponencial en todo el mundo. A la vez que se extendía esta patrimonialización de la naturaleza, los trabajos etnográficos sobre las áreas protegidas han ido ganando terreno dentro de la disciplina y, en particular, en el campo de la Antropología Ambiental. La mencionada bibliografía ha puesto de relieve los múltiples aspectos derivados de las nuevas políticas territoriales de regulación, apropiación y mercantilización de la ‘naturaleza’. En este trabajo realizamos una revisión exhaustiva de la producción generada a raíz de este interés por las áreas protegidas en nuestro país subrayando sus principales aportaciones, características y debilidades. De este modo pretendemos reflexionar acerca de su continuidad, con el fin de evitar la mera reiteración y favorecer el avance en sus resultados.