954 resultados para PLATINUM-ELECTRODES
Resumo:
The potentiometric and AC impedance characteristics of all solid-state sodium-selective electrodes based on planar screen-printed Ag/AgCl electrodes are described. Two solid-state designs have been investigated. The first was based on the deposition of a sodium-selective PVC membrane directly on top of a screen-printed Ag/AgCl electrode, The second design included a NaCl doped hydrogel layer, between the PVC and Ag\AgCl layers. The hydrogel provides a mechanism to relieve any blockage to charge transfer occurring when PVC membranes are used directly on top of Ag/AgCl and also improves adhesion between the two layers. Results suggest the electrodes display Fast ion exchange kinetics, low noise and drift. The performance compares favorably to that of a conventional ion-selective electrode with internal filling solution.
Resumo:
For a better understanding of the adsorption behavior of alkylcarbonate-based electrolytes on graphite electrodes and Celgard separator for Li-ion batteries applications, the interface parameters are determined by contact angle and surface tension measurements. The correlation between these parameters and chemical compositions made of alkyl carbonate with a varying nature of lithium salts (LiPF6 and LiTFSI) and volume fractions of binary and ternary mixtures containing propylene carbonate (PC), ethylene carbonate (EC), and dimethyl carbonate (DMC) is investigated. From the obtained contact angle and surface tension (?L) values for each liquid, the dispersive and polar components of the surface tension (?Ld and ?Lp) of the electrolyte and interfacial free energy between the solid and liquid (?SL) were then calculated using the Young’s equation. The variation of contact angle (?) and the surface tension, as well as the work of adhesion (WA) of binary PC/DMC mixtures on PP, PE, and PET model surfaces were also measured and commented as function of volume fraction of PC in DMC. Finally, the Zisman’s critical surface tension (?C) for studied surfaces was then obtained showing positives slopes of cos ? versus ?L. This behavior is explained by a relative higher adsorption of alkylcarbonates to the hydrogenated supports or graphite. These results are decisive to understand the performance of electrolyte/electrode material/separator interfaces in lithium-ion battery devices.
Resumo:
The present invention provides improved intravaginal drug delivery devices, i.e., intravaginal rings, useful for the prophylactic administration of an antimicrobial compound, e.g., Dapivirine, to a human. The intravaginal rings of the invention address previous stability issues by utilizing a platinum catalyst (e.g., in the form of a platinum-siloxane complex) for the cross-linking reaction. The vaginal rings surprisingly achieve relatively high and steady release rates in vivo with a matrix ring containing a relatively small loading dose. While the matrix rings of the present invention have in vivo the steady release rates associated with reservoir rings, they are easier and less expensive to manufacture. The present invention also provides methods of blocking DNA polymerization by an HIV reverse transcriptase enzyme, methods of preventing HIV infection in a female human, methods of treating HIV infection in a female human, and methods of preparing platinum-catalyzed intravaginal rings.
Resumo:
High activity and stability during oxidation of methanol under the relatively anode environment are two main evaluation criterias for an effective anode electrocatalyst in direct methanol fuel cell (DMFC). Mesoporous WC samples with hollow structure were prepared by gas-solid reaction at the atmosphere of CH(4)/H(2) by using airflow spray dried ammonium metatungstate (AMT). The platinum supported on this material by impregnation-vapor phase deoxidation method served as a less expensive electro anode catalyst. XRD and SEM results showed that Pt particles were well dispersed on the surface of WC. The results showed that the Pt/WC-PME exhibited an attractive catalytic activity, and methanol oxidation process in Pt/WC-PME is affected by liquid-phase mass transfer. The results also indicated that the oxidation can be improved by raising temperatures.
Resumo:
The selective hydrogenation of ,-unsaturated aldehydes and ketones has been studied using ketoisophorone and cinnamaldehyde as model substrates using manganese oxide octahedral molecular sieve (OMS-2) based catalysts. For the first time, OMS-2 has been shown to be an efficient and selective hydrogenation catalyst. High selectivities for either the CC or CO double bond at approximate to 100% conversion were achieved by using OMS-2 and platinum supported on OMS-2 catalysts. Density functional theory (DFT) calculations showed that the dissociation of H2 on OMS-2 was water assisted and occurred on the surface Mn of OMS-2(001) that had been modified by an adsorbed H2O molecule. The theoretically calculated activation barrier was in good agreement with the experimentally determined value for the hydrogenation reactions, indicating that H2 dissociation on OMS-2 is likely to be the rate-determining step. A significant increase in the rate of reaction was observed in the presence of Pt as a result of the enhancement of H2 dissociative adsorption and subsequent reaction on the Pt or spillover of the hydrogen to the OMS-2 support. The relative adsorption strengths of ketoisophorone and cinnamaldehyde on the OMS-2 support compared with the Pt were found to determine the product selectivity.
Resumo:
Up to 50% of epithelial ovarian cancers (EOC) display defects in the homologous recombination (HR) pathway. We sought to determine the ramifications of the homologous recombination-deficient (HRD) status on the clinicopathologic features, chemotherapy response, and survival outcomes of patients with EOCs. HR status was determined in primary cultures from ascitic fluid in 50 chemotherapy-naïve patients by a functional RAD51 immunofluorescence assay and correlated with in vitro sensitivity to the PARP inhibitor (PARPi), rucaparib. All patients went on to receive platinum-based chemotherapy; platinum sensitivity, tumor progression, and overall survival were compared prospectively in HR-competent versus HRD patients. Compared with HR-competent patients, the HRD group was predominantly serous with a higher median CA125 at presentation. HRD was associated with higher ex vivo PARPi sensitivity and clinical platinum sensitivity. Median follow-up duration was 14 months; patients in the HRD group had lower tumor progression rates at 6 months, lower overall/disease-specific death rates at 12 months, and higher median survival. We therefore suggest that HRD as predicted by a functional RAD51 assay correlates with in vitro PARPi sensitivity, clinical platinum sensitivity, and improved survival outcome.
Resumo:
We report the combined studies of density functional theory (DFT) calculations and electrochemical in situ FTIR spectroscopy on surface oxidants and mechanisms of CO oxidation at the Ru(0001) electrodes. It is shown that CO can co-adsorb with both O and OH species at lower potential region where a low coverage of the (2 x 2)-O/OH adlayer formed; the oxidation of CO adsorbates takes place at higher potentials where a high coverage of the (1 x 1)-O/OH adlayer formed. Surface O species are not the active oxidants under all coverages studied, due to the high reaction barriers between CO and O (>1 eV). However, surface OH species with higher coverage are identified as the active oxidants, and CO oxidation takes place via a two-steps' mechanism of CO + 3OH -> COOH + 2OH -> CO2 + H2O + OH, in which three nearby OH species are involved in the CO2 formation: CO reacts with OH, forming COOH; COOH then transfers the H to a nearby OH to form H2O and CO2, at the same time, another H in the H2O transfers to a nearby OH to form a weak adsorbed H2O and a new OH. The reaction barrier of these processes is reduced significantly to around 0.50 eV. These new results not only provide an insight into surface active oxidants on Ru, which is directly relevant to fuel cell catalysis, but also reveals the extra complexity of catalytic reactions taking place at solid/liquid electrochemical interface in comparison to the relatively simpler ones at solid/gas phase.
Resumo:
The electrochemical reduction of benzoic acid in the presence and absence of hydrogen (H-2) has been investigated using a 10 mu m diameter platinum microelectrode in four different room temperature ionic liquids (RTILs), namely [C(4)mim][NTf2], [C(4)mpyrr][NTf2], [C(4)mim][OTf] and [C(4)mim][BF4], versus Ag/Ag+. In all cases, reductive voltammetry is observed, and is suggested to occur via a CE mechanism in which dissociation of benzoic acid is followed by electron transfer to H+ ultimately forming adsorbed hydrogen. Furthermore, the adsorbed H atoms, formed from the reduction of benzoic acid, could be used to achieve the rapid hydrogenolysis of the organic compound (bis(benzyloxycarbonyl)-L-lysine) on the timescale of the voltammetric technique under moderate conditions (25 degrees C).
Resumo:
Electrochemically modified ethylene oxidation over a PI film supported on the Na+ ion conductor beta '' alumina has been studied over a range of conditions encompassing both promotion and poisoning, The system exhibits reversible behavior, and the data are interpreted in terms of (i) Na-enhanced oxygen chemisorption and (ii) poisoning of the surface by accumulation of Na compounds. At low Na coverages the first effect results in increased competitive adsorption of oxygen at the expense of ethylene, resulting in an increased rate, At very negative catalyst potentials (high Na coverage) both effects operate to poison the system: the increased strength of the Pt-O bond and coverage of the catalytic surface by compounds of Na strongly suppress the rate, Kinetic and spectroscopic results for ethylene oxidation over a Pt(111)-Na model catalyst shed light on important aspects of the electrochemically controlled system, Low levels of Na promote the reaction and high levels poison it, mirroring the behavior observed under electrochemical control and strongly suggesting that sodium pumped from the solid electrolyte is the key species, XP and Auger spectra show that under reaction conditions, the sodium exists as a surface carbonate. Post-reaction TPD spectra and the use of (CO)-C-13 demonstrate that CO is formed as a stable reaction intermediate, The observed activation energy (56 +/- 3 kJ/mol) is similar to that measured for CO oxidation under comparable conditions, suggesting that the rate limiting step is CO oxidation. (C) 1996 Academic Press, Inc.
Resumo:
A facile and user-friendly protocol has been developed for the selective synthesis of E-vinyl silanes derived from propargylic alcohols using a PtCl2/XPhos catalyst system. The reaction is generally high yielding and provides a single regioisomer at the ß-position with E-alkene geometry. The reaction is extremely tolerant of functionality and has a wide scope of reactivity both in terms of alkynes and silanes used. The catalyst loading has been investigated and it is found that good reactivity is observed at extremely low catalyst loadings. This methodology has also been extended to a one-pot hydrosilylation Denmark–Hiyama coupling.
Resumo:
The electrochemical deposition of Ru on Pt(111) electrodes has been investigated by electron diffraction, Auger spectroscopy, and cyclic voltammetry in a closed UHV transfer system. At small coverages Ru formed a monatomic commensurate layer, at higher coverage mostly small islands with a bilayer height were detected. When the Pt was almost completely covered by Ru, three-dimensional clusters developed. The island structure of Ru changed upon electrooxidation of CO, reflecting an enhanced mobility of Ru. Adsorption and electrooxidation of CO have been studied on such Ru-modified Pt(111) electrodes using cyclic voltammetry and in situ FTIR spectroscopy. Compared to the pure metals, the Ru-CO bond is weakened, the Pt-CO bond strengthened on the modified electrodes. The catalytic activity of the Ru/Pt(111) electrode toward CO adlayer oxidation is higher than that of pure Ru and a PtRu alloy (50:50). It is concluded that the electrooxidation of CO takes place preferentially at the Ru islands, while CO adsorbed on Pt migrates to them. © 1999 American Chemical Society.
Resumo:
The activities of different types of PtRu catalysts for methanol oxidation are compared. Materials used were: UHV-cleaned PtRu alloys, UHV-evaporated Ru onto Pt(111) as well as adsorbed Ru on Pt(111) prepared with and without additional reduction by hydrogen. Differences in the catalytic activity are observed to depend on the preparation procedure of the catalysts. The dependence of the respective catalytic activities upon the surface composition is reported. UHV-STM data for Pt(111)/Ru show the formation of two- and three-dimensional structures depending on surface coverage. A molecular insight on the electrochemical reaction is given via in situ infrared spectroscopy. Analysis of the data indicates that the most probable rate-determining step is the reaction of adsorbed CO with Ru oxide.
Resumo:
The electronic and vibrational properties of CO adsorbed on Pt electrodes at different potentials have been studied, by using methods of self-consistent-charge discrete variational Xa (SCC-DV-Xa) cluster calculations and in situ FTir spectroscopy. Two new models have been developed and verified to be successful: (1) using a "metallic state cluster" to imitate a metal (electrode) surface; and (2) charging the cluster and shifting its Fermi level (e{lunate}) to simulate, according to the relation of -d e{lunate}e dE, quantitatively the variation of the electrode potential (E). It is shown that the binding of PtCO is dominated by the electric charge transfer of dp ? 2p, while that of s ? Pt is less important in this binding. The electron occupancy of the 2p orbital of CO weakens the CO bond and decreases the v. Variation of E mainly influences the charge transfer process of dp ? 2p, but hardly influences that of s ? Pt. A linear potential-dependence of v has been shown and the calculated dv/dE = 35.0 cm V. All results of calculations coincide with the ir experimental data. © 1993.