966 resultados para PLASMON RESONANCE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flexible SERS active substrates were prepared by modification of silk fabrics with gold nanoparticles. Gold nanoparticles were in-situ synthesized after heating the silk fabrics immersed in gold ion solution. Localized surface plasmon resonance (LSPR) properties of the treated silk fabrics varied as the concentration of gold ions changed, in relation to the morphologies of gold nanoparticles on silk. In addition, X-ray diffraction (XRD) was used to observe the structure of the gold nanoparticle treated silk fabrics. The SERS enhancement effect of the silk fabrics treated with gold nanoparticles was evaluated by collecting Raman signals of different concentrations of p-aminothiophenol (PATP), 4-mercaptopyridine (4-MPy) and crystal violet (CV) solutions. The results demonstrate that the silk fabrics corresponding to 0.3 and 0.4 mM of gold ions possess high SERS activity compared to the other treated fabrics. It is suggested that both the gold content and morphologies of gold nanoparticles dominate the SERS effect of the treated silk fabrics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peptides have demonstrated unique capabilities to fabricate inorganic nanomaterials of numerous compositions through noncovalent binding of the growing surface in solution. In this contribution, we demonstrate that these biomolecules can control all facets of Au nanoparticle fabrication, including Au3+ reduction, without the use of secondary reagents. In this regard using the AuBP1 peptide, the N-terminal tryptophan residue is responsible for driving Au3+ reduction to generate Au nanoparticles passivated by the oxidized peptide in solution, where localized residue context effects control the reducing strength of the biomolecule. The process was fully monitored by both time-resolved monitoring of the growth of the localized surface plasmon resonance and transmission electron microscopy. Nanoparticle growth occurs by a unique disaggregation of nanoparticle aggregates in solution. Computational modeling demonstrated that the oxidized residue of the peptide sequence does not impact the biomolecule's ability to bind the inorganic surface, as compared to the parent peptide, confirming that the biomolecule can be exploited for all steps in the nanoparticle fabrication process. Overall, these results expand the utility of peptides for the fabrication of inorganic nanomaterials, more strongly mimicking their use in nature via biomineralization processes. Furthermore, these capabilities enhance the simplicity of nanoparticle production and could find rapid use in the generation of complex multicomponent materials or nanoparticle assembly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b5, whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge in modern photonics and nano-optics is the diffraction limit of light which does not allow field localisation into regions with dimensions smaller than half the wavelength. Localisation of light into nanoscale regions (beyond its diffraction limit) has applications ranging from the design of optical sensors and measurement techniques with resolutions as high as a few nanometres, to the effective delivery of optical energy into targeted nanoscale regions such as quantum dots, nano-electronic and nano-optical devices. This field has become a major research direction over the last decade. The use of strongly localised surface plasmons in metallic nanostructures is one of the most promising approaches to overcome this problem. Therefore, the aim of this thesis is to investigate the linear and non-linear propagation of surface plasmons in metallic nanostructures. This thesis will focus on two main areas of plasmonic research –– plasmon nanofocusing and plasmon nanoguiding. Plasmon nanofocusing – The main aim of plasmon nanofocusing research is to focus plasmon energy into nanoscale regions using metallic nanostructures and at the same time achieve strong local field enhancement. Various structures for nanofocusing purposes have been proposed and analysed such as sharp metal wedges, tapered metal films on dielectric substrates, tapered metal rods, and dielectric V-grooves in metals. However, a number of important practical issues related to nanofocusing in these structures still remain unclear. Therefore, one of the main aims of this thesis is to address two of the most important of issues which are the coupling efficiency and heating effects of surface plasmons in metallic nanostructures. The method of analysis developed throughout this thesis is a general treatment that can be applied to a diversity of nanofocusing structures, with results shown here for the specific case of sharp metal wedges. Based on the geometrical optics approximation, it is demonstrated that the coupling efficiency from plasmons generated with a metal grating into the nanofocused symmetric or quasi-symmetric modes may vary between ~50% to ~100% depending on the structural parameters. Optimal conditions for nanofocusing with the view to minimise coupling and dissipative losses are also determined and discussed. It is shown that the temperature near the tip of a metal wedge heated by nanosecond plasmonic pulses can increase by several hundred degrees Celsius. This temperature increase is expected to lead to nonlinear effects, self-influence of the focused plasmon, and ultimately self-destruction of the metal tip. This thesis also investigates a different type of nanofocusing structure which consists of a tapered high-index dielectric layer resting on a metal surface. It is shown that the nanofocusing mechanism that occurs in this structure is somewhat different from other structures that have been considered thus far. For example, the surface plasmon experiences significant backreflection and mode transformation at a cut-off thickness. In addition, the reflected plasmon shows negative refraction properties that have not been observed in other nanofocusing structures considered to date. Plasmon nanoguiding – Guiding surface plasmons using metallic nanostructures is important for the development of highly integrated optical components and circuits which are expected to have a superior performance compared to their electronicbased counterparts. A number of different plasmonic waveguides have been considered over the last decade including the recently considered gap and trench plasmon waveguides. The gap and trench plasmon waveguides have proven to be difficult to fabricate. Therefore, this thesis will propose and analyse four different modified gap and trench plasmon waveguides that are expected to be easier to fabricate, and at the same time acquire improved propagation characteristics of the guided mode. In particular, it is demonstrated that the guided modes are significantly screened by the extended metal at the bottom of the structure. This is important for the design of highly integrated optics as it provides the opportunity to place two waveguides close together without significant cross-talk. This thesis also investigates the use of plasmonic nanowires to construct a Fabry-Pérot resonator/interferometer. It is shown that the resonance effect can be achieved with the appropriate resonator length and gap width. Typical quality factors of the Fabry- Pérot cavity are determined and explained in terms of radiative and dissipative losses. The possibility of using a nanowire resonator for the design of plasmonic filters with close to ~100% transmission is also demonstrated. It is expected that the results obtained in this thesis will play a vital role in the development of high resolution near field microscopy and spectroscopy, new measurement techniques and devices for single molecule detection, highly integrated optical devices, and nanobiotechnology devices for diagnostics of living cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optically tuned silver nanoparticles (AgNP's) functionalized with ω-mercaptoalkanoic acids are synthesized and used as a signal amplifier for the surface-enhanced resonance Raman scattering (SERRS) study of heme cofactor in methemoglobin (metHb). Even though both mercaptopropionic acid (MPA)- and mercaptononanoic acid (MNA)-functionalized AgNP's exemplify vastly enhanced SERRS signal of metHb, MNA-AgNP's amplify the SERRS signal amid preservation of the nativity of the heme pocket, unlike MPA-AgNP's. The electrostatic interaction between MNA-AgNP's and metHb leads to instant signal enhancement with a Raman enhancement factor (EF(SERS)) of 4.2 × 10(3). Additionally, a Langmuir adsorption isotherm has been employed for the adsorption of metHb on the MNA-AgNP surface, which provides the real surface coverage and equilibrium constant (K) of metHb as 139 nM and 3.6 × 10(8) M(-1), respectively. The lowest detection limit of 10 nM for metHb has been demonstrated using MNA-AgNP's besides retaining the nativity of the heme pocket.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A compact electron cyclotron wave resonance (ECWR) source has been developed for the high rate deposition of hydrogenated tetrahedral amorphous carbon (ta-C:H). The ECWR provides growth rates of up to 1.5 nm/s over a 4-inch diameter and an independent control of the deposition rate and ion energy. The ta-C:H was deposited using acetylene as the source gas and was characterized as having an sp3 content of up to 77%, plasmon energy of 27 eV, refractive index of 2.45, hydrogen content of about 30%, optical gap of up to 2.1 eV and RMS surface roughness of 0.04 nm. © 1999 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmonic resonance at terahertz (THz) frequencies can be achieved by gating graphene grown via chemical vapour deposition (CVD) to a high carrier concentration. THz time domain spectroscopy of such gated monolayer graphene shows resonance features around 1.6 THz, which appear as absorption peaks when the graphene is electrostatically p-doped and change to enhanced transmission when the graphene is n-doped. Superimposed on the Drude-like frequency response of graphene, these resonance features are related to the inherent poly-crystallinity of CVD graphene. An understanding of these features is necessary for the development of future THz optical elements based on CVD graphene. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pt nanoparticles (NPs), which posses the wider tunable localized-surface-plasmon (LSP) energy varying from deep ultraviolet to visible region depending on their morphology, were prepared by annealing Pt thin films with different initial mass-thicknesses. A sixfold enhancement of the 357 nm forward emission of ZnMgO was observed after capping with Pt NPs, which is due to the resonance coupling between the LSP of Pt NPs and the band-gap emission of ZnMgO. The other factors affecting the ultraviolet emission of ZnMgO, such as emission from Pt itself and light multi-scattering at the interface, were also discussed. These results indicate that Pt NPs can be used to enhance the ultraviolet emission through the LSP coupling for various wide band-gap semiconductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical treatment of optical transmission through periodically nanosructured metal films capable of supporting surface-plasmon polaritons is presented. The optical properties of such metal films are governed by surface polariton behavior in a periodic surface structure forming a surface polaritonic crystal. Due to different configurations of the electromagnetic field of surface polariton modes, only states of even Brillouin zones are responsible for the optical transmission enhancement at normal incidence. The transmission enhancement is related to photon tunneling via resonant states of surface polariton Bloch modes in which the energy buildup takes place. Surface polariton states of at least one of the film interfaces contribute to the transmission resonance which occurs due to tunnel coupling between photons and surface polaritons on the opposite interfaces. Under double-resonance conditions, resonant tunneling between surface polariton states of both interfaces is achieved, which leads to further enhancement of the transmission efficiency. The double-resonance conditions occur not only in the case of a film in symmetric environment but can also be engineered for a film on a substrate. Light tunneling via surface polariton states can take place directly through a structured metal film and does not necessarily require holes in a film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiative decay of surface plasmon polaritons has been investigated in an attempt to characterize the surface roughness of Ag films prepared under different conditions. The polaritons were excited by the method of attenuated total reflection of light. The films were deposited on the face of a 60-degrees BK-7 glass prism at a rate that was deliberately fixed in two different ranges (centred on 0.1 and 10 nm s-1) and in some cases a CaF2 underlayer was used to roughen the film surfaces. The intensity of the scattered light emitted from the opposite face of the films was measured as a function of direction for each using the same sensitivity scale and was correlated with the preparation of the film. It was found that on nominally smooth substrates fast-deposited thinner films give out more light and are deduced to have greater short wavelength (300-600 nm) roughness amplitude. There is also evidence for long wavelenth (7 mum) periodic roughness due to the prism substrate itself. On CaF2 roughened surfaces the light output from the films is further increased and the peak intensity is backward directed with respect to the exciting laser beam direction. Here roughness on a lateral scale of 350 nm is responsible. Also, elastic scattering of surface plasmon polaritons at grain boundaries reduces the light output from fast deposited, small grain, films on CaF2 roughened surfaces. Overall, a consistent picture of roughness induced radiative polariton decay emerges for all cases studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the effects of silver nano-spheroid size and elongation on plasmon wavelength are investigated, and the plasmon eigenvalues are formulated as a function of the radius and aspect ratio of the nano-particles. These can be used in eigenmode plasmonic interaction method to study interaction of nano-particles on each other at dipole resonance frequencies.. It is demonstrated that plasmon eigenvalues are partially linear with respect to radius and aspect ratio of the nano-spheroids. In addition, it is shown that the maximum enhancement occurs in the direction of the polarization angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A frequency upconversion process in Pr(3+) doped TeO(2)-ZnO glasses containing silver nanoparticles is studied under excitation with a nanosecond laser operating at 590 nm, in resonance with the (3)H(4)-->(1)D(2) transition. The excited Pr(3+) ions exchange energy in the presence of the nanoparticles, originating efficient conversion from orange to blue. The enhancement in the intensity of the luminescence at similar to 482 nm, corresponding to the (3)P(0)-->(3)H(4) transition, is due to the influence of the large local field on the Pr(3+) ions, which are located near the metallic nanoparticles. (C) 2008 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, sub-wavelength-pitch stacked double-gate metal nanotip arrays have been proposed to realize high current, high brightness electron bunches for ultrabright cathodes for x-ray free-electron laser applications. With the proposed device structure, ultrafast field emission of photoexcited electrons is efficiently driven by vertical incident near infrared laser pulses, via near field coupling of the surface plasmon polariton resonance of the gate electrodes with the nanotip apex. In this work, in order to gain insight in the underlying physical processes, the authors report detailed numerical studies of the proposed device. The results indicate the importance of the interaction of the double-layer surface plasmon polariton, the position of the nanotip, as well as the incident angle of the near infrared laser pulses.