911 resultados para PIAAC <Programme for the International Assessment of Adult Competencies>
Resumo:
Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in numerical models used for image reconstruction is likely to improve EIT image quality.
Resumo:
The present paper constitutes a synthesis of the results gotten during the five campaigns of air quality measurement in the years of 2003 and 2004 carried out in the Portuguese city of Viana do Castelo to characterise the reference situation and to accompany the Polis Programme, an urban re-qualification and environmental valorisation plan. The main objective of the monitoring programme consisted of the evaluation of atmospheric pollutants whose levels were susceptible of enhancement in the course of the urbanistic public works. The presented results refer to measurements performed in two distinct places of this city, comprising various consecutive days of acquisition that include, at least, one day of weekend.
Resumo:
Resumen tomado de la publicación
Resumo:
In any undergraduate engineering programme there is a need to assess the balance and flavour of the various educational strands. In order for a quality assurance of these programmes to be met there is a need to evaluate the course load, academic content and the assessment marks of each course in the undergraduate programme. The existing ranges of QA methods for these programmes are focused on one or two of these issues and do not provide a comprehensive assessment procedure. Following a review of the existing QA methods, this paper will define a three-dimensional approach to the assessment of the educational aspects of an undergraduate course. Various features of this method will be described and potential benefits explained.
Resumo:
Includes bibliography
Resumo:
Spanish version available at the Library
Resumo:
Includes bibliography
Resumo:
Background: Neuropsychiatric symptoms (NPS) affect almost all patients with dementia and are a major focus of study and treatment. Accurate assessment of NPS through valid, sensitive and reliable measures is crucial. Although current NPS measures have many strengths, they also have some limitations (e.g. acquisition of data is limited to informants or caregivers as respondents, limited depth of items specific to moderate dementia). Therefore, we developed a revised version of the NPI, known as the NPI-C. The NPI-C includes expanded domains and items, and a clinician-rating methodology. This study evaluated the reliability and convergent validity of the NPI-C at ten international sites (seven languages). Methods: Face validity for 78 new items was obtained through a Delphi panel. A total of 128 dyads (caregivers/patients) from three severity categories of dementia (mild = 58, moderate = 49, severe = 21) were interviewed separately by two trained raters using two rating methods: the original NPI interview and a clinician-rated method. Rater 1 also administered four additional, established measures: the Apathy Evaluation Scale, the Brief Psychiatric Rating Scale, the Cohen-Mansfield Agitation Index, and the Cornell Scale for Depression in Dementia. Intraclass correlations were used to determine inter-rater reliability. Pearson correlations between the four relevant NPI-C domains and their corresponding outside measures were used for convergent validity. Results: Inter-rater reliability was strong for most items. Convergent validity was moderate (apathy and agitation) to strong (hallucinations and delusions; agitation and aberrant vocalization; and depression) for clinician ratings in NPI-C domains. Conclusion: Overall, the NPI-C shows promise as a versatile tool which can accurately measure NPS and which uses a uniform scale system to facilitate data comparisons across studies. Copyright © 2010 International Psychogeriatric Association.
Resumo:
Includes bibliography
Resumo:
Contiene el título de las resoluciones y su número.