964 resultados para Ordinary differential equations. Initial value problem. Existenceand uniqueness. Euler method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uncontrolled disposal of wastewaters containing phenolic compounds by the industry has caused irreversible damage to the environment. Because of this, it is now mandatory to develop new methods to treat these effluents before they are disposed of. One of the most promising and low cost approaches is the degradation of phenolic compounds via photocatalysis. This work, in particular, has as the main goal, the customization of a bench scale photoreactor and the preparation of catalysts via utilization of char originated from the fast pyrolysis of sewage sludge. The experiments were carried out at constant temperature (50°C) under oxygen (410, 515, 650 and 750 ml min-1). The reaction took place in the liquid phase (3.4 liters), where the catalyst concentration was 1g L-1 and the initial concentration of phenol was 500 mg L-1 and the reaction time was set to 3 hours. A 400 W lamp was adapted to the reactor. The flow of oxygen was optimized to 650 ml min-1. The pH of the liquid and the nature of the catalyst (acidified and calcined palygorskite, palygorskite impregnated with 3.8% Fe and the pyrolysis char) were investigated. The catalytic materials were characterized by XRD, XRF, and BET. In the process of photocatalytic degradation of phenol, the results showed that the pH has a significant influence on the phenol conversion, with best results for pH equal to 5.5. The phenol conversion ranged from 51.78% for the char sewage sludge to 58.02% (for palygorskite acidified calcined). Liquid samples analyzed by liquid chromatography and the following compounds were identified: hydroquinone, catechol and maleic acid. A mechanism of the reaction was proposed, whereas the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. For the latter, the Langmuir-Hinshelwood model was applied, whose mass balances led to a system of differential equations and these were solved using numerical methods in order to get estimates for the kinetic and adsorption parameters. The model was adjusted satisfactorily to the experimental results. From the proposed mechanism and the operating conditions used in this study, the most favored step, regardless of the catalyst, was the acid group (originated from quinone compounds), being transformed into CO2 and water, whose rate constant k4 presented value of 0.578 mol L-1 min-1 for acidified calcined palygorskite, 0.472 mol L-1 min-1 for Fe2O3/palygorskite and 1.276 mol L-1 min-1 for the sludge to char, the latter being the best catalyst for mineralization of acid to CO2 and water. The quinones were adsorbed to the acidic sites of the calcined palygorskite and Fe2O3/palygorskite whose adsorption constants were similar (~ 4.45 L mol-1) and higher than that of the sewage sludge char (3.77 L mol-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite time extinction phenomenon (the solution reaches an equilibrium after a finite time) is peculiar to certain nonlinear problems whose solutions exhibit an asymptotic behavior entirely different from the typical behavior of solutions associated to linear problems. The main goal of this work is twofold. Firstly, we extend some of the results known in the literature to the case in which the ordinary time derivative is considered jointly with a fractional time differentiation. Secondly, we consider the limit case when only the fractional derivative remains. The latter is the most extraordinary case, since we prove that the finite time extinction phenomenon still appears, even with a non-smooth profile near the extinction time. Some concrete examples of quasi-linear partial differential operators are proposed. Our results can also be applied in the framework of suitable nonlinear Volterra integro-differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of delays into ordinary or partial differential equation models is well known to facilitate the production of rich dynamics ranging from periodic solutions through to spatio-temporal chaos. In this paper we consider a class of scalar partial differential equations with a delayed threshold nonlinearity which admits exact solutions for equilibria, periodic orbits and travelling waves. Importantly we show how the spectra of periodic and travelling wave solutions can be determined in terms of the zeros of a complex analytic function. Using this as a computational tool to determine stability we show that delays can have very different effects on threshold systems with negative as opposed to positive feedback. Direct numerical simulations are used to confirm our bifurcation analysis, and to probe some of the rich behaviour possible for mixed feedback.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Liapunov convexity theorem's version for vectorial control systems driven by linear ODEs of first-order p = 1 , in any dimension d ∈ N , by including a pointwise state-constraint. More precisely, given a x ‾ ( ⋅ ) ∈ W p , 1 ( [ a , b ] , R d ) solving the convexified p-th order differential inclusion L p x ‾ ( t ) ∈ co { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e., consider the general problem consisting in finding bang-bang solutions (i.e. L p x ˆ ( t ) ∈ { u 0 ( t ) , u 1 ( t ) , … , u m ( t ) } a.e.) under the same boundary-data, x ˆ ( k ) ( a ) = x ‾ ( k ) ( a ) & x ˆ ( k ) ( b ) = x ‾ ( k ) ( b ) ( k = 0 , 1 , … , p − 1 ); but restricted, moreover, by a pointwise state constraint of the type 〈 x ˆ ( t ) , ω 〉 ≤ 〈 x ‾ ( t ) , ω 〉 ∀ t ∈ [ a , b ] (e.g. ω = ( 1 , 0 , … , 0 ) yielding x ˆ 1 ( t ) ≤ x ‾ 1 ( t ) ). Previous results in the scalar d = 1 case were the pioneering Amar & Cellina paper (dealing with L p x ( ⋅ ) = x ′ ( ⋅ ) ), followed by Cerf & Mariconda results, who solved the general case of linear differential operators L p of order p ≥ 2 with C 0 ( [ a , b ] ) -coefficients. This paper is dedicated to: focus on the missing case p = 1 , i.e. using L p x ( ⋅ ) = x ′ ( ⋅ ) + A ( ⋅ ) x ( ⋅ ) ; generalize the dimension of x ( ⋅ ) , from the scalar case d = 1 to the vectorial d ∈ N case; weaken the coefficients, from continuous to integrable, so that A ( ⋅ ) now becomes a d × d -integrable matrix; and allow the directional vector ω to become a moving AC function ω ( ⋅ ) . Previous vectorial results had constant ω, no matrix (i.e. A ( ⋅ ) ≡ 0 ) and considered: constant control-vertices (Amar & Mariconda) and, more recently, integrable control-vertices (ourselves).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some circumstances ice floes may be modeled as beams. In general this modeling supposes constant thickness, which contradicts field observations. Action of currents, wind and the sequence of contacts, causes thickness to vary. Here this effect is taken into consideration on the modeling of the behavior of ice hitting inclined walls of offshore platforms. For this purpose, the boundary value problem is first equated. The set of equations so obtained is then transformed into a system of equations, that is then solved numerically. For this sake an implicit solution is developed, using a shooting method, with the accompanying Jacobian. In-plane coupling and the dependency of the boundary terms on deformation, make the problem non-linear and the development particular. Deformation and internal resultants are then computed for harmonic forms of beam profile. Forms of giving some additional generality to the problem are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several numerical methods for boundary value problems use integral and differential operational matrices, expressed in polynomial bases in a Hilbert space of functions. This work presents a sequence of matrix operations allowing a direct computation of operational matrices for polynomial bases, orthogonal or not, starting with any previously known reference matrix. Furthermore, it shows how to obtain the reference matrix for a chosen polynomial base. The results presented here can be applied not only for integration and differentiation, but also for any linear operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study the existence and regularity of mild solutions for a class of abstract partial neutral integro-differential equations with unbounded delay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supersonic flow of a superfluid past a slender impenetrable macroscopic obstacle is studied in the framework of the two-dimensional (2D) defocusing nonlinear Schroumldinger (NLS) equation. This problem is of fundamental importance as a dispersive analog of the corresponding classical gas-dynamics problem. Assuming the oncoming flow speed is sufficiently high, we asymptotically reduce the original boundary-value problem for a steady flow past a slender body to the one-dimensional dispersive piston problem described by the nonstationary NLS equation, in which the role of time is played by the stretched x coordinate and the piston motion curve is defined by the spatial body profile. Two steady oblique spatial dispersive shock waves (DSWs) spreading from the pointed ends of the body are generated in both half planes. These are described analytically by constructing appropriate exact solutions of the Whitham modulation equations for the front DSW and by using a generalized Bohr-Sommerfeld quantization rule for the oblique dark soliton fan in the rear DSW. We propose an extension of the traditional modulation description of DSWs to include the linear ""ship-wave"" pattern forming outside the nonlinear modulation region of the front DSW. Our analytic results are supported by direct 2D unsteady numerical simulations and are relevant to recent experiments on Bose-Einstein condensates freely expanding past obstacles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of Macdonald for electrolytes is generalized to the case in which two groups of ions are present. We assume that the electrolyte can be considered as a dispersion of ions in a dielectric liquid, and that the ionic recombination can be neglected. We present the differential equations governing the ionic redistribution when the liquid is subjected to an external electric field, describing the simultaneous diffusion of the two groups of ions in the presence of their own space charge fields. We investigate the influence of the ions on the impedance spectroscopy of an electrolytic cell. In the analysis, we assume that each group of ions have equal mobility, the electrodes perfectly block and that the adsorption phenomena can be neglected. In this framework, it is shown that the real part of the electrical impedance of the cell has a frequency dependence presenting two plateaux, related to a type of ambipolar and free diffusion coefficients. The importance of the considered problem on the ionic characterization performed by means of the impedance spectroscopy technique was discussed. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the method of Galerkin and the Askey-Wiener scheme are used to obtain approximate solutions to the stochastic displacement response of Kirchhoff plates with uncertain parameters. Theoretical and numerical results are presented. The Lax-Milgram lemma is used to express the conditions for existence and uniqueness of the solution. Uncertainties in plate and foundation stiffness are modeled by respecting these conditions, hence using Legendre polynomials indexed in uniform random variables. The space of approximate solutions is built using results of density between the space of continuous functions and Sobolev spaces. Approximate Galerkin solutions are compared with results of Monte Carlo simulation, in terms of first and second order moments and in terms of histograms of the displacement response. Numerical results for two example problems show very fast convergence to the exact solution, at excellent accuracies. The Askey-Wiener Galerkin scheme developed herein is able to reproduce the histogram of the displacement response. The scheme is shown to be a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work considers a semi-implicit system A, that is, a pair (S, y), where S is an explicit system described by a state representation (x)over dot(t) = f(t, x(t), u(t)), where x(t) is an element of R(n) and u(t) is an element of R(m), which is subject to a set of algebraic constraints y(t) = h(t, x(t), u(t)) = 0, where y(t) is an element of R(l). An input candidate is a set of functions v = (v(1),.... v(s)), which may depend on time t, on x, and on u and its derivatives up to a Finite order. The problem of finding a (local) proper state representation (z)over dot = g(t, z, v) with input v for the implicit system Delta is studied in this article. The main result shows necessary and sufficient conditions for the solution of this problem, under mild assumptions on the class of admissible state representations of Delta. These solvability conditions rely on an integrability test that is computed from the explicit system S. The approach of this article is the infinite-dimensional differential geometric setting of Fliess, Levine, Martin, and Rouchon (1999) (`A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems`, IEEE Transactions on Automatic Control, 44(5), (922-937)).