897 resultados para Optical pattern recognition -- Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although exceptions may be readily identified, two generalizations concerning genetic differences among species may be drawn from the available allozyme and chromosome data. First, structural gene differences among species vary widely. In many cases, species pairs do not differ more than intraspecific populations. This suggests that either very few or no gene substitutions are required to produce barriers to reproduction (Avise 1976). Second, chromosome form and/or number differs among even closely related species (White 1963; 1978; Fredga 1977; Wright 1970). Many of the observed chromosomal differences involve translocational rearrangements; these produce severe fitness depression in heterozygotes and were, thus, long considered unlikely candidates for the fixation required of genetic changes leading to speciation (Wright 1977). Nonetheless, the fact that species differences are frequently translocational argues convincingly for their fixation despite prejudices to the contrary. Haldane's rule states that in the F of interspecific crosses, the heterogametic sex is absent or sterile in the preponderance of cases (Haldane 1932). This rule definitely applies in the genus Dr°sophila (Ehrman 1962). Sex chromosome translocations do not impose a fitness depression as severe as that imposed by autosomal translocations, and X-Y translocations may account for Haldane's rule (Haldane 1932). Consequently a study of the fit ness parameters of an X·yL and a yS chromosome in Drosophila melanogaster populations was initiated by Tracey (1972). Preliminary results suggested that x.yL//YSmales enjoyed a mating advantage with X·yL//X·yL females, that this advantage was frequency dependent, that the translocation produced sexual isolation and that interactions between the yL, yS and a yellow marker contributed to the observed isolation (Tracey and Espinet 1976; Espinet and Tracey 1976). Encouraged by the results of these prelimimary studies, further experiments were performed to clarify the genetic nature of the observed sexual isolation, S the reality of the y frequency dependent fitness .and the behavioural changes, if any, produced by the translocation. The results of this work are reported herein. Although the marker genes used in earlier studies, sparkling poliert an d yellow have both been found to affect activity,but only yellow effects asymmetric sexual isolation. In addition yellow effects isolation through an interaction with the T(X-y) chromosomes, yS also effects isolation, and translocational strains are isolated from those of normal karyotype in the absence of marker gene differences. When yS chromosomes are in competition with y chromosomes on an X.yL background, yS males are at a distinct advantage only when their frequency is less than 97%. The sex chromosome translocation alters the normal courtship pattern by the incorporation of circling between vibration and licking in the male repertoire. Finally a model of speciation base on the fixation of this sex chromosome translocation in a geographically isolated gene pool is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Speech is the most natural means of communication among human beings and speech processing and recognition are intensive areas of research for the last five decades. Since speech recognition is a pattern recognition problem, classification is an important part of any speech recognition system. In this work, a speech recognition system is developed for recognizing speaker independent spoken digits in Malayalam. Voice signals are sampled directly from the microphone. The proposed method is implemented for 1000 speakers uttering 10 digits each. Since the speech signals are affected by background noise, the signals are tuned by removing the noise from it using wavelet denoising method based on Soft Thresholding. Here, the features from the signals are extracted using Discrete Wavelet Transforms (DWT) because they are well suitable for processing non-stationary signals like speech. This is due to their multi- resolutional, multi-scale analysis characteristics. Speech recognition is a multiclass classification problem. So, the feature vector set obtained are classified using three classifiers namely, Artificial Neural Networks (ANN), Support Vector Machines (SVM) and Naive Bayes classifiers which are capable of handling multiclasses. During classification stage, the input feature vector data is trained using information relating to known patterns and then they are tested using the test data set. The performances of all these classifiers are evaluated based on recognition accuracy. All the three methods produced good recognition accuracy. DWT and ANN produced a recognition accuracy of 89%, SVM and DWT combination produced an accuracy of 86.6% and Naive Bayes and DWT combination produced an accuracy of 83.5%. ANN is found to be better among the three methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On-line handwriting recognition has been a frontier area of research for the last few decades under the purview of pattern recognition. Word processing turns to be a vexing experience even if it is with the assistance of an alphanumeric keyboard in Indian languages. A natural solution for this problem is offered through online character recognition. There is abundant literature on the handwriting recognition of western, Chinese and Japanese scripts, but there are very few related to the recognition of Indic script such as Malayalam. This paper presents an efficient Online Handwritten character Recognition System for Malayalam Characters (OHR-M) using K-NN algorithm. It would help in recognizing Malayalam text entered using pen-like devices. A novel feature extraction method, a combination of time domain features and dynamic representation of writing direction along with its curvature is used for recognizing Malayalam characters. This writer independent system gives an excellent accuracy of 98.125% with recognition time of 15-30 milliseconds

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Handwritten character recognition is always a frontier area of research in the field of pattern recognition and image processing and there is a large demand for OCR on hand written documents. Even though, sufficient studies have performed in foreign scripts like Chinese, Japanese and Arabic characters, only a very few work can be traced for handwritten character recognition of Indian scripts especially for the South Indian scripts. This paper provides an overview of offline handwritten character recognition in South Indian Scripts, namely Malayalam, Tamil, Kannada and Telungu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the effectiveness of a novel method of computer assisted pedicle screw insertion was studied using testing of hypothesis procedure with a sample size of 48. Pattern recognition based on geometric features of markers on the drill has been performed on real time optical video obtained from orthogonally placed CCD cameras. The study reveals the exactness of the calculated position of the drill using navigation based on CT image of the vertebra and real time optical video of the drill. The significance value is 0.424 at 95% confidence level which indicates good precision with a standard mean error of only 0.00724. The virtual vision method is less hazardous to both patient and the surgeon

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an overview of current research on artificial neural networks, emphasizing a statistical perspective. We view neural networks as parameterized graphs that make probabilistic assumptions about data, and view learning algorithms as methods for finding parameter values that look probable in the light of the data. We discuss basic issues in representation and learning, and treat some of the practical issues that arise in fitting networks to data. We also discuss links between neural networks and the general formalism of graphical models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Support Vector Machines (SVMs) perform pattern recognition between two point classes by finding a decision surface determined by certain points of the training set, termed Support Vectors (SV). This surface, which in some feature space of possibly infinite dimension can be regarded as a hyperplane, is obtained from the solution of a problem of quadratic programming that depends on a regularization parameter. In this paper we study some mathematical properties of support vectors and show that the decision surface can be written as the sum of two orthogonal terms, the first depending only on the margin vectors (which are SVs lying on the margin), the second proportional to the regularization parameter. For almost all values of the parameter, this enables us to predict how the decision surface varies for small parameter changes. In the special but important case of feature space of finite dimension m, we also show that there are at most m+1 margin vectors and observe that m+1 SVs are usually sufficient to fully determine the decision surface. For relatively small m this latter result leads to a consistent reduction of the SV number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building robust recognition systems requires a careful understanding of the effects of error in sensed features. Error in these image features results in a region of uncertainty in the possible image location of each additional model feature. We present an accurate, analytic approximation for this uncertainty region when model poses are based on matching three image and model points, for both Gaussian and bounded error in the detection of image points, and for both scaled-orthographic and perspective projection models. This result applies to objects that are fully three- dimensional, where past results considered only two-dimensional objects. Further, we introduce a linear programming algorithm to compute the uncertainty region when poses are based on any number of initial matches. Finally, we use these results to extend, from two-dimensional to three- dimensional objects, robust implementations of alignmentt interpretation- tree search, and ransformation clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The accuracy of a 3D reconstruction using laser scanners is significantly determined by the detection of the laser stripe. Since the energy pattern of such a stripe corresponds to a Gaussian profile, it makes sense to detect the point of maximum light intensity (or peak) by computing the zero-crossing point of the first derivative of such Gaussian profile. However, because noise is present in every physical process, such as electronic image formation, it is not sensitive to perform the derivative of the image of the stripe in almost any situation, unless a previous filtering stage is done. Considering that stripe scanning is an inherently row-parallel process, every row of a given image must be processed independently in order to compute its corresponding peak position in the row. This paper reports on the use of digital filtering techniques in order to cope with the scanning of different surfaces with different optical properties and different noise levels, leading to the proposal of a more accurate numerical peak detector, even at very low signal-to-noise ratios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Behavior-based navigation of autonomous vehicles requires the recognition of the navigable areas and the potential obstacles. In this paper we describe a model-based objects recognition system which is part of an image interpretation system intended to assist the navigation of autonomous vehicles that operate in industrial environments. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using a rule-based cooperative expert system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a model-based objects recognition system which is part of an image interpretation system intended to assist autonomous vehicles navigation. The system is intended to operate in man-made environments. Behavior-based navigation of autonomous vehicles involves the recognition of navigable areas and the potential obstacles. The recognition system integrates color, shape and texture information together with the location of the vanishing point. The recognition process starts from some prior scene knowledge, that is, a generic model of the expected scene and the potential objects. The recognition system constitutes an approach where different low-level vision techniques extract a multitude of image descriptors which are then analyzed using a rule-based reasoning system to interpret the image content. This system has been implemented using CEES, the C++ embedded expert system shell developed in the Systems Engineering and Automatic Control Laboratory (University of Girona) as a specific rule-based problem solving tool. It has been especially conceived for supporting cooperative expert systems, and uses the object oriented programming paradigm

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catadioptric sensors are combinations of mirrors and lenses made in order to obtain a wide field of view. In this paper we propose a new sensor that has omnidirectional viewing ability and it also provides depth information about the nearby surrounding. The sensor is based on a conventional camera coupled with a laser emitter and two hyperbolic mirrors. Mathematical formulation and precise specifications of the intrinsic and extrinsic parameters of the sensor are discussed. Our approach overcomes limitations of the existing omni-directional sensors and eventually leads to reduced costs of production