989 resultados para Odorico, da Pordenone, 1265?-1331.
Resumo:
The Paleocene-Eocene thermal maximum (PETM) has been attributed to the rapid release of ~2000 * 10**9 metric tons of carbon in the form of methane. In theory, oxidation and ocean absorption of this carbon should have lowerd deep-sea pH, thereby triggering a rapid (<10,000-year) shoaling of the calcite compensation depth (CCD), followed by gradual recovery. Here we present geochemical data from five new South Atlantic deep-sea sections that constrain the timing and extent of massive sea-floor carbonate dissolution coincident with the PETM. The sections, from between 2.7 and 4.8 kilometers water depth, are marked by a prominent clay layer, the character of which indicates that the CCD shoaled rapidly (<10,000 years) by more than 2 kilometers and recovered gradually (>100,000 years). These findings indicate that a large mass of carbon (>>2000 * 10**9 metric tons of carbon) dissolved in the ocean at the Paleocene-Eocene boundary and that permanent sequestration of this carbon occurred through silicate weathering feedback.
Resumo:
The Filchner-Ronne ice shelf, which drains most of the marine-based portions of the West Antarctic ice sheet, is the largest ice shelf on Earth by volume. The origin and properties of the ice that constitutes this shelf are poorly understood, because a strong reflecting interface within the ice and the diffuse nature of the ice?ocean interface make seismic and radio echo sounding data difficult to interpret. Ice in the upper part of the shelf is of meteoric origin, but it has been proposed that a basal layer of saline ice accumulates from below. Here we present the results of an analysis of the physical and chemical characteristics of an ice core drilled almost to the bottom of the Ronne ice shelf. We observe a change in ice properties at about 150 m depth, which we ascribe to a change from meteoric ice to basal marine ice. The basal ice is very different from sea ice formed at the ocean surface and we propose a formation mechanism in which ice platelets in the water column accrete to the bottom of the ice shelf.