960 resultados para Ocean.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programa de oceanografía

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] The reproductive phenology of three species of Gelidiales, Gelidium canariense, Gelidium arbuscula and Pterocladiella capillacea, was analysed seasonally for a period of one year in two localities on the West coast of Tenerife Atlantic Ocean, Canary Islands, Spain. Considerations are provided on sex ratio, maximum length and branch order of uprights and on the length of the thalli for each sexual and asexual phase of the Canary Islands populations. The three species were characterized by a high percentage of tetrasporophytes, while female and male gametophytes have been observed only in little proportion. Only G. canariense showed gametophytes in all seasons while the occurrence of gametophytes in G. arbuscula and Pterocladiella capillacea demonstrated a clear seasonality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Vertical distributions of turbulent energy dissipation rates and fluorescence were measured simultaneously with a high-resolution micro-profiler in four different oceanographic regions, from temperate to polar and from coastal to open waters settings. High fluorescence values, forming a deep chlorophyll maximum (DCM), were often located in weakly stratified portions of the upper water column, just below layers with maximum levels of turbulent energy dissipation rate. In the vicinity of the DCM, a significant negative relationship between fluorescence and turbulent energy dissipation rate was found. We discuss the mechanisms that may explain the observed patterns of planktonic biomass distribution within the ocean mixed layer, including a vertically variable diffusion coefficient and the alteration of the cells sinking velocity by turbulent motion. These findings provide further insight into the processes controlling the vertical distribution of the pelagic community and position of the DCM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] We describe the coupling between upper ocean layer variability and size-fractionated phytoplankton distribution in the non-nutrient-limited Bransfield Strait region (BS) of Antarctica. For this purpose we use hydrographic and size-fractionated chlorophyll a data from a transect that crossed 2 fronts and an eddy, together with data from 3 stations located in a deeply mixed region, the Antarctic Sound (AS). In the BS transect, small phytoplankton (<20 μm equivalent spherical diameter [ESD]) accounted for 80% of total chl a and their distribution appeared to be linked to cross-frontal variability. On the deepening upper mixed layer (UML) sides of both fronts we observed a deep subducting column-like structure of small phytoplankton biomass. On the shoaling UML sides of both fronts, where there were signs of restratification, we observed a local shallow maximum of small phytoplankton biomass. We propose that this observed phytoplankton distribution may be a response to the development of frontal vertical circulation cells. In the deep, turbulent environment of the AS, larger phytoplankton (>20 μm ESD) accounted for 80% of total chl a. The proportion of large phytoplankton increases as the depth of the upper mixed layer (ZUML), and the corresponding rate of vertical mixing, increases. We hypothesize that this change in phytoplankton composition with varying ZUML is related to the competition for light, and results from modification of the light regime caused by vertical mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN]Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[EN] Today, science is difficult to pursue because funding is so tenuous. In such a financial climate, researchers need to consider parallel alternatives to ensure that scientific research can continue. Based on this thinking, we created BIOCEANSolutions, a company born of a research group. A great variety of environmental regulations and standards have emerged over recent years with the purpose of protecting natural ecosystems. These have enabled us to link our research to the market of environmental management. Marine activities can alter environmental conditions, resulting in changes in physiological states, species diversity, abundance, and biomass in the local biological communities. In this way, we can apply our knowledge, to plankton ecophysiology and biochemical oceanography. We measure enzyme activities as bio-indicators of energy metabolism and other physiological rates and biologic-oceanographic processes in marine organisms. This information provides insight into the health of marine communities, the stress levels of individual organisms, and potential anomalies that may be affecting them. In the process of verifying standards and complying with regulations, we can apply our analytic capability and knowledge. The main analyses that we offer are: (1) the activity of the electron transport system (ETS) or potential respiration (Φ), (2) the physiological measurement of respiration (oxygen consumption), (3) the activity of Isocitrate dehydrogenase (IDH), (4) the respiratory CO2 production, and (5) the activity of Glutamate dehydrogenase (GDH) and (6) the physiological measurement of ammonium excretion. In addition, our experience in a productive research group allows us to pursue and develop technical-experimental activities such as marine and freshwater aquaculture, oceanographic field sampling, as well as providing guidance, counseling, and academic services. In summary, this new company will permit us to create a symbiosis between public and private sectors that serve clients and will allow us to grow and expand as a research team.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degree in Marine Sciences. Faculty of Marine Sciences, University of Las Palmas de Gran Canaria. Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabajo realizado por: Packard, T. T., Osma, N., Fernández Urruzola, I., Gómez, M