992 resultados para Numerical tool
Resumo:
BACKGROUND Several studies in recent years have evaluated Health Related Quality of Life (HRQoL) of patients with primary hyperparathyroidism (PHPT). No disease specific questionnaires are available to assess the impact of the disease. The aim of this research is to describe the development of a new disease specific Quality of Life (QoL) questionnaire for use specifically with PHPT patients. METHODS A conceptual model was developed describing the impact of the disease and its symptoms on QoL domains. A literature review was conducted to identify the most relevant domains. A focus group with experts was used to validate the domains; 24 patients were also interviewed to complement the information from the patient's perspective. A content analysis of the interviews was performed to identify items related with the impact of the disease, leading to PHPQoL-V.1 which was presented to a sample of 67 patients. Reliability was assessed by Cronbach's coefficient alpha and item-total score correlations. Validity was assessed by a factor analysis performed to determine the number of domains. Rasch analysis was carried out in order to refine the questionnaire items. RESULTS 259 items were extracted from the interviews that were subsequently reduced to 34 items. Cronbach's coefficient alpha was 0.92. The factor analysis extracted two domains (physical and emotional). After Rasch analysis the questionnaire PHPQoL-V.2 kept 16 items (9 physical and 7 emotional). The questionnaire was developed in a Spanish population and the final version was translated to English through translation and back-translation. CONCLUSION The first disease specific HRQoL questionnaire for PHPT patients (PHPQoL-16) has been developed. Validation studies designed to assess measurement properties of this tool are currently underway.
Resumo:
Low-grade osteosarcoma is a rare malignancy that may be subdivided into two main subgroups on the basis of location in relation to the bone cortex, that is, parosteal osteosarcoma and low-grade central osteosarcoma. Their histological appearance is quite similar and characterized by spindle cell stroma with low-to-moderate cellularity and well-differentiated anastomosing bone trabeculae. Low-grade osteosarcomas have a simple genetic profile with supernumerary ring chromosomes comprising amplification of chromosome 12q13-15, including the cyclin-dependent kinase 4 (CDK4) and murine double-minute type 2 (MDM2) gene region. Low-grade osteosarcoma can be confused with fibrous and fibro-osseous lesions such as fibromatosis and fibrous dysplasia on radiological and histological findings. We investigated MDM2-CDK4 immunohistochemical expression in a series of 72 low-grade osteosarcomas and 107 fibrous or fibro-osseous lesions of the bone or paraosseous soft tissue. The MDM2-CDK4 amplification status of low-grade osteosarcoma was also evaluated by comparative genomic hybridization array in 18 cases, and the MDM2 amplification status was evaluated by fluorescence in situ hybridization or quantitative real-time polymerase chain reaction in 31 cases of benign fibrous and fibro-osseous lesions. MDM2-CDK4 immunostaining and MDM2 amplification by fluorescence in situ hybridization or quantitative real-time polymerase chain reaction were investigated in a control group of 23 cases of primary high-grade bone sarcoma, including 20 conventional high-grade osteosarcomas, two pleomorphic spindle cell sarcomas/malignant fibrous histiocytomas and one leiomyosarcoma. The results showed that MDM2 and/or CDK4 immunoreactivity was present in 89% of low-grade osteosarcoma specimens. All benign fibrous and fibro-osseous lesions and the tumors of the control group were negative for MDM2 and CDK4. These results were consistent with the MDM2 and CDK4 amplification results. In conclusion, immunohistochemical expression of MDM2 and CDK4 is specific and provides sensitive markers for the diagnosis of low-grade osteosarcomas, helping to differentiate them from benign fibrous and fibro-osseous lesions, particularly in cases with atypical radio-clinical presentation and/or limited biopsy samples.
Resumo:
Objectives: We are interested in the numerical simulation of the anastomotic region comprised between outflow canula of LVAD and the aorta. Segmenta¬tion, geometry reconstruction and grid generation from patient-specific data remain an issue because of the variable quality of DICOM images, in particular CT-scan (e.g. metallic noise of the device, non-aortic contrast phase). We pro¬pose a general framework to overcome this problem and create suitable grids for numerical simulations.Methods: Preliminary treatment of images is performed by reducing the level window and enhancing the contrast of the greyscale image using contrast-limited adaptive histogram equalization. A gradient anisotropic diffusion filter is applied to reduce the noise. Then, watershed segmentation algorithms and mathematical morphology filters allow reconstructing the patient geometry. This is done using the InsightToolKit library (www.itk.org). Finally the Vascular Model¬ing ToolKit (www.vmtk.org) and gmsh (www.geuz.org/gmsh) are used to create the meshes for the fluid (blood) and structure (arterial wall, outflow canula) and to a priori identify the boundary layers. The method is tested on five different patients with left ventricular assistance and who underwent a CT-scan exam.Results: This method produced good results in four patients. The anastomosis area is recovered and the generated grids are suitable for numerical simulations. In one patient the method failed to produce a good segmentation because of the small dimension of the aortic arch with respect to the image resolution.Conclusions: The described framework allows the use of data that could not be otherwise segmented by standard automatic segmentation tools. In particular the computational grids that have been generated are suitable for simulations that take into account fluid-structure interactions. Finally the presented method features a good reproducibility and fast application.
Resumo:
Complex and variable morphological phenotypes pose a major challenge to the histopathological classification of neuroepithelial tumors. This applies in particular for low-grade gliomas and glio-neuronal tumors. Recently, we and others have identified microtubule-associated protein-2 (MAP2) as an immunohistochemical marker expressed in the majority of glial tumors. Characteristic cell morphologies can be recognized by MAP2 immunoreactivity in different glioma entities, i.e., process sparse oligodendroglial versus densely ramified astrocytic elements. Here, we describe MAP2-immunoreactivity patterns in a large series of various neuroepithelial tumors and related neoplasms (n = 960). Immunohistochemical analysis led to the following conclusions: (1) specific pattern of MAP2-positive tumor cells can be identified in 95% of glial neoplasms; (2) ependymal tumors do not express MAP2 in their rosette-forming cell component; (3) tumors of the pineal gland as well as malignant embryonic tumors are also characterized by abundant MAP2 immunoreactivity; (4) virtually no MAP2 expression can be observed in the neoplastic glial component of glio-neuronal tumors, i.e. gangliogliomas; (5) malignant glial tumor variants (WHO grade III or IV) exhibit different and less specific MAP2 staining patterns compared to their benign counterparts (WHO grade I or II); (6) with the exception of melanomas and small cell lung cancers, MAP2 expression is very rare in metastatic and non-neuroepithelial tumors; (7) glial MAP2 expression was not detected in 56 non-neoplastic lesions. These data point towards MAP2 as valuable diagnostic tool for pattern recognition and differential diagnosis of low-grade neuroepithelial tumors.
Resumo:
The aim of this working paper is to analyze the inclusion of political humor into the set of actions used by opponents to the Syrian regime during the first year of a state-wide uprising in 2011. The research argues that although political humor has traditionally been seen mainly as a concealed voice against dominant elites, it can nevertheless take a confrontational stance and challenge a regime. In this paper we assess the role of political humor in challenging the legitimacy of the Syrian State through the battle for the signification of events. We will work with a theoretical framework that draws its assumptions from social movements’ studies and cultural studies. Through the assessment of the importance of discourse and the role of ideological domination to a regime we will see how the first year of the Syrian uprising included widespread acts of political humor as part of the strategy against the regime.
Resumo:
L’objectiu principal és presentar un nou prototipus d’eina per al disseny de les plantes de tractament d’aigües residuals utilitzant models mecànics dinàmics quantificant la incertesa
Resumo:
Background: Excessive exposure to solar Ultra-Violet (UV) light is the main cause of most skin cancers in humans. Factors such as the increase of solar irradiation at ground level (anthropic pollution), the rise in standard of living (vacation in sunny areas), and (mostly) the development of outdoor activities have contributed to increase exposure. Thus, unsurprisingly, incidence of skin cancers has increased over the last decades more than that of any other cancer. Melanoma is the most lethal cutaneous cancer, while cutaneous carcinomas are the most common cancer type worldwide. UV exposure depends on environmental as well as individual factors related to activity. The influence of individual factors on exposure among building workers was investigated in a previous study. Posture and orientation were found to account for at least 38% of the total variance of relative individual exposure. A high variance of short-term exposure was observed between different body locations, indicating the occurrence of intense, subacute exposures. It was also found that effective short-term exposure ranged between 0 and 200% of ambient irradiation, suggesting that ambient irradiation is a poor predictor of effective exposure. Various dosimetric techniques enable to assess individual effective exposure, but dosimetric measurements remain tedious and tend to be situation-specific. As a matter of facts, individual factors (exposure time, body posture and orientation in the sun) often limit the extrapolation of exposure results to similar activities conducted in other conditions. Objective: The research presented in this paper aims at developing and validating a predictive tool of effective individual exposure to solar UV. Methods: Existing computer graphic techniques (3D rendering) were adapted to reflect solar exposure conditions and calculate short-term anatomical doses. A numerical model, represented as a 3D triangular mesh, is used to represent the exposed body. The amount of solar energy received by each "triangle is calculated, taking into account irradiation intensity, incidence angle and possible shadowing from other body parts. The model take into account the three components of the solar irradiation (direct, diffuse and albedo) as well as the orientation and posture of the body. Field measurements were carried out using a forensic mannequin at the Payerne MeteoSwiss station. Short-term dosimetric measurements were performed in 7 anatomical locations for 5 body postures. Field results were compared to the model prediction obtained from the numerical model. Results: The best match between prediction and measurements was obtained for upper body parts such as shoulders (Ratio Modelled/Measured; Mean = 1.21, SD = 0.34) and neck (Mean = 0.81, SD = 0.32). Small curved body parts such as forehead (Mean = 6.48, SD = 9.61) exhibited a lower matching. The prediction is less accurate for complex postures such as kneeling (Mean = 4.13, SD = 8.38) compared to standing up (Mean = 0.85, SD = 0.48). The values obtained from the dosimeters and the ones computed from the model are globally consistent. Conclusion: Although further development and validation are required, these results suggest that effective exposure could be predicted for a given activity (work or leisure) in various ambient irradiation conditions. Using a generic modelling approach is of high interest in terms of implementation costs as well as predictive and retrospective capabilities.
Resumo:
Research in vitro facilitates discovery, screening, and pilot experiments, often preceding research in vivo. Several technical difficulties render Dendritic Cell (DC) research particularly challenging, including the low frequency of DC in vivo, thorough isolation requirements, and the vulnerability of DC ex vivo. Critically, there is not as yet a widely accepted human or murine DC line and in vitro systems of DC research are limited. In this study, we report the generation of new murine DC lines, named MutuDC, originating from cultures of splenic CD8α conventional DC (cDC) tumors. By direct comparison to normal WT splenic cDC subsets, we describe the phenotypic and functional features of the MutuDC lines and show that they have retained all the major features of their natural counterpart in vivo, the splenic CD8α cDC. These features include expression of surface markers Clec9A, DEC205, and CD24, positive response to TLR3 and TLR9 but not TLR7 stimuli, secretion of cytokines, and chemokines upon activation, as well as cross-presentation capacity. In addition to the close resemblance to normal splenic CD8α cDC, a major advantage is the ease of derivation and maintenance of the MutuDC lines, using standard culture medium and conditions, importantly without adding supplementary growth factors or maturation-inducing stimuli to the medium. Furthermore, genetically modified MutuDC lines have been successfully obtained either by lentiviral transduction or by culture of DC tumors originating from genetically modified mice. In view of the current lack of stable and functional DC lines, these novel murine DC lines have the potential to serve as an important auxiliary tool for DC research.
Resumo:
One of the important questions in biological evolution is to know if certain changes along protein coding genes have contributed to the adaptation of species. This problem is known to be biologically complex and computationally very expensive. It, therefore, requires efficient Grid or cluster solutions to overcome the computational challenge. We have developed a Grid-enabled tool (gcodeml) that relies on the PAML (codeml) package to help analyse large phylogenetic datasets on both Grids and computational clusters. Although we report on results for gcodeml, our approach is applicable and customisable to related problems in biology or other scientific domains.
Resumo:
Final report of the eKnowledge's project, an online forum tool that offers consultants and students the chance to create spaces for asynchronous communication and collaboration.
Resumo:
INTRODUCTION: Optimal identification of subtle cognitive impairment in the primary care setting requires a very brief tool combining (a) patients' subjective impairments, (b) cognitive testing, and (c) information from informants. The present study developed a new, very quick and easily administered case-finding tool combining these assessments ('BrainCheck') and tested the feasibility and validity of this instrument in two independent studies. METHODS: We developed a case-finding tool comprised of patient-directed (a) questions about memory and depression and (b) clock drawing, and (c) the informant-directed 7-item version of the Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE). Feasibility study: 52 general practitioners rated the feasibility and acceptance of the patient-directed tool. Validation study: An independent group of 288 Memory Clinic patients (mean ± SD age = 76.6 ± 7.9, education = 12.0 ± 2.6; 53.8% female) with diagnoses of mild cognitive impairment (n = 80), probable Alzheimer's disease (n = 185), or major depression (n = 23) and 126 demographically matched, cognitively healthy volunteer participants (age = 75.2 ± 8.8, education = 12.5 ± 2.7; 40% female) partook. All patient and healthy control participants were administered the patient-directed tool, and informants of 113 patient and 70 healthy control participants completed the very short IQCODE. RESULTS: Feasibility study: General practitioners rated the patient-directed tool as highly feasible and acceptable. Validation study: A Classification and Regression Tree analysis generated an algorithm to categorize patient-directed data which resulted in a correct classification rate (CCR) of 81.2% (sensitivity = 83.0%, specificity = 79.4%). Critically, the CCR of the combined patient- and informant-directed instruments (BrainCheck) reached nearly 90% (that is 89.4%; sensitivity = 97.4%, specificity = 81.6%). CONCLUSION: A new and very brief instrument for general practitioners, 'BrainCheck', combined three sources of information deemed critical for effective case-finding (that is, patients' subject impairments, cognitive testing, informant information) and resulted in a nearly 90% CCR. Thus, it provides a very efficient and valid tool to aid general practitioners in deciding whether patients with suspected cognitive impairments should be further evaluated or not ('watchful waiting').
Resumo:
BACKGROUND: Retinal dystrophies (RD) are a group of hereditary diseases that lead to debilitating visual impairment and are usually transmitted as a Mendelian trait. Pathogenic mutations can occur in any of the 100 or more disease genes identified so far, making molecular diagnosis a rather laborious process. In this work we explored the use of whole exome sequencing (WES) as a tool for identification of RD mutations, with the aim of assessing its applicability in a diagnostic context. METHODOLOGY/PRINCIPAL FINDINGS: We ascertained 12 Spanish families with seemingly recessive RD. All of the index patients underwent mutational pre-screening by chip-based sequence hybridization and resulted to be negative for known RD mutations. With the exception of one pedigree, to simulate a standard diagnostic scenario we processed by WES only the DNA from the index patient of each family, followed by in silico data analysis. We successfully identified causative mutations in patients from 10 different families, which were later verified by Sanger sequencing and co-segregation analyses. Specifically, we detected pathogenic DNA variants (∼50% novel mutations) in the genes RP1, USH2A, CNGB3, NMNAT1, CHM, and ABCA4, responsible for retinitis pigmentosa, Usher syndrome, achromatopsia, Leber congenital amaurosis, choroideremia, or recessive Stargardt/cone-rod dystrophy cases. CONCLUSIONS/SIGNIFICANCE: Despite the absence of genetic information from other family members that could help excluding nonpathogenic DNA variants, we could detect causative mutations in a variety of genes known to represent a wide spectrum of clinical phenotypes in 83% of the patients analyzed. Considering the constant drop in costs for human exome sequencing and the relative simplicity of the analyses made, this technique could represent a valuable tool for molecular diagnostics or genetic research, even in cases for which no genotypes from family members are available.