899 resultados para Numerical methodologies


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers the stability of explicit, implicit and Crank-Nicolson schemes for the one-dimensional heat equation on a staggered grid. Furthemore, we consider the cases when both explicit and implicit approximations of the boundary conditions arc employed. Why we choose to do this is clearly motivated and arises front solving fluid flow equations with free surfaces when the Reynolds number can be very small. in at least parts of the spatial domain. A comprehensive stability analysis is supplied: a novel result is the precise stability restriction on the Crank-Nicolson method when the boundary conditions are approximated explicitly, that is, at t =n delta t rather than t = (n + 1)delta t. The two-dimensional Navier-Stokes equations were then solved by a marker and cell approach for two simple problems that had analytic solutions. It was found that the stability results provided in this paper were qualitatively very similar. thereby providing insight as to why a Crank-Nicolson approximation of the momentum equations is only conditionally, stable. Copyright (C) 2008 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the validity of the Born-Oppenheimer approximation in chaotic dynamics. Using numerical solutions of autonomous Fermi accelerators. we show that the general adiabatic conditions can be interpreted as the narrowness of the chaotic region in phase space. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H-E = 5590 kOe), anisotropy field (H-A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H-D = 149 kOe) are in good agreement with previous reports on this system. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we present an analytical direct method, based on a Numerov three-point scheme, which is sixth order accurate and has a linear execution time on the grid dimension, to solve the discrete one-dimensional Poisson equation with Dirichlet boundary conditions. Our results should improve numerical codes used mainly in self-consistent calculations in solid state physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Burkholderia cepacia lipase was immobilized on superparamagnetic nanoparticles using three different methodologies (adsorption, chemisorption with carboxibenzaldehyde and chemisorption with glutaraldehyde) and employed in the kinetic resolution of a chiral drug precursor, (RS)-2-bromo-1-(phenyl)ethanol, via enantioselective acetylation reaction. An excellent improvement of lipase catalytical performance was observed. Free B. cepacia lipase gave the ester (S)-2 with poor E-value <30, and after its immobilization to magnetic nanoparticles the E-value was up to >200. The effect of several reaction parameters in the kinetic resolution was studied. The best results for kinetic resolution were obtained using vinyl acetate as acetyl donor and toluene as solvent, typically yielding the ester in high enantiomeric excess (>99%) and E-value (E > 200). Of the three tested immobilization methods, chemisorption with glutaraldehyde was the best one in terms of temperature stability and yield product. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article centres on issues of vulnerability and being compromised in feminist research where the focus has frequently been on researching the same. Compromise, here used in its pejorative sense, may for instance occur in terms of one’s research topic, the methods one utilizes, or the participants chosen for a study. Drawing on a range of examples including the methodological work of Ann Oakley (1981, 2000) as well as three articles on researching men that appeared in the journal Signs in 2005, I argue that feminist researchers, possibly because they work in an identity-based discipline, may be diversely vulnerable when researching the same and/or researching the different, and can be compromised both by how they are treated by those whom they encounter in their research and by their own behaviour in that context. I suggest that these concerns are under-articulated in feminist research and conclude with a series of questions that need to be raised. 

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scour around hydraulic structures is a critical problem in hydraulic engineering. Under prediction of scour depth may lead to costly failures of the structure, while over prediction might result in unnecessary costs. Unfortunately, up-to-date empirical scour prediction formulas are based on laboratory experiments that are not always able to reproduce field conditions due to complicated geometry of rivers and temporal and spatial scales of a physical model. However, computational fluid dynamics (CFD) tools can perform using real field dimensions and operating conditions to predict sediment scour around hydraulic structures. In Korea, after completing the Four Major Rivers Restoration Project, several new weirs have been built across Han, Nakdong, Geum and Yeongsan Rivers. Consequently, sediment deposition and bed erosion around such structures have became a major issue in these four rivers. In this study, an application of an open source CFD software package, the TELEMAC-MASCARET, to simulate sediment transport and bed morphology around Gangjeong weir, which is the largest multipurpose weir built on Nakdong River. A real bathymetry of the river and a geometry of the weir have been implemented into the numerical model. The numerical simulation is carried out with a real hydrograph at the upstream boundary. The bedmorphology obtained from the numerical results has been validated against field observation data, and a maximum of simulated scour depth is compared with the results obtained by empirical formulas of Hoffmans. Agreement between numerical computations, observed data and empirical formulas is judged to be satisfactory on all major comparisons. The outcome of this study does not only point out the locations where deposition and erosion might take place depending on the weir gate operation, but also analyzes the mechanism of formation and evolution of scour holes after the weir gates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vertical stream bed erosion has been studied routinely and its modeling is getting widespread acceptance. The same cannot be said with lateral stream bank erosion since its measurement or numerical modeling is very challenging. Bank erosion, however, can be important to channel morphology. It may contribute significantly to the overall sediment budget of a stream, is a leading cause of channel migration, and is the cause of major channel maintenance. However, combined vertical and lateral channel evolution is seldom addressed. In this study, a new geofluival numerical model is developed to simulate combined vertical and lateral channel evolution. Vertical erosion is predicted with a 2D depth-averaged model SRH-2D, while lateral erosion is simulated with a linear retreat bank erosion model developed in this study. SRH-2D and the bank erosion model are coupled together both spatially and temporally through a common mesh and the same time advancement. The new geofluvial model is first tested and verified using laboratory meander channels; good agreement are obtained between predicted bank retreat and measured data. The model is then applied to a 16-kilometer reach of Chosui River, Taiwan. Vertical and lateral channel evolution during a three-year period (2004 to 2007) is simulated and results are compared with the field data. It is shown that the geofluvial model correctly captures all major erosion and deposition patterns. The new model is shown to be useful for identifying potential erosion sites and providing information for river maintenance planning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sistemas de previsão de cheias podem ser adequadamente utilizados quando o alcance é suficiente, em comparação com o tempo necessário para ações preventivas ou corretivas. Além disso, são fundamentalmente importantes a confiabilidade e a precisão das previsões. Previsões de níveis de inundação são sempre aproximações, e intervalos de confiança não são sempre aplicáveis, especialmente com graus de incerteza altos, o que produz intervalos de confiança muito grandes. Estes intervalos são problemáticos, em presença de níveis fluviais muito altos ou muito baixos. Neste estudo, previsões de níveis de cheia são efetuadas, tanto na forma numérica tradicional quanto na forma de categorias, para as quais utiliza-se um sistema especialista baseado em regras e inferências difusas. Metodologias e procedimentos computacionais para aprendizado, simulação e consulta são idealizados, e então desenvolvidos sob forma de um aplicativo (SELF – Sistema Especialista com uso de Lógica “Fuzzy”), com objetivo de pesquisa e operação. As comparações, com base nos aspectos de utilização para a previsão, de sistemas especialistas difusos e modelos empíricos lineares, revelam forte analogia, apesar das diferenças teóricas fundamentais existentes. As metodologias são aplicadas para previsão na bacia do rio Camaquã (15543 km2), para alcances entre 10 e 48 horas. Dificuldades práticas à aplicação são identificadas, resultando em soluções as quais constituem-se em avanços do conhecimento e da técnica. Previsões, tanto na forma numérica quanto categorizada são executadas com sucesso, com uso dos novos recursos. As avaliações e comparações das previsões são feitas utilizandose um novo grupo de estatísticas, derivadas das freqüências simultâneas de ocorrência de valores observados e preditos na mesma categoria, durante a simulação. Os efeitos da variação da densidade da rede são analisados, verificando-se que sistemas de previsão pluvio-hidrométrica em tempo atual são possíveis, mesmo com pequeno número de postos de aquisição de dados de chuva, para previsões sob forma de categorias difusas.