926 resultados para Nucleic acid detection tests


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work started a research project aimed at the synthesis of conformationally “locked” PNA (Peptide Nucleic Acids) monomers. Compared to classic aeg-PNA, this structural modification would result in an improvement in the pairing properties with natural nucleic acids, due to entropic variations in the process. Specifically, an attempt was made to build a PNA monomer around a β-lactam ring. That ring could be imagined as obtained by linking the methylene groups in α position of both the nucleobase and the carboxyl function. These structural properties would imply pre-organization of the final oligomer, improving the pairing process in biological systems. The first step of this work was the investigation of the Staudinger reaction for the ciclization of the lactam ring, and in particular the activation method of the carboxylic group of the nucleobase derivatives. Use of triazine chloride led to the synthesis of the adenine-based β-lactam-PNA. Attempts to synthesize the same monomer based on cytosine, guanine and thymine were unsuccessful, so alternative methods for carboxylic group activation were investigated. Conversion of carboxylic acids to acyl chlorides led to a partial result: despite the method worked well with analogues of the final reactants, it didn’t worked with substrates needed for lactam based PNAs. Search for a valid activation process continued involving carbonyl diimidazole, Mukayama reagent, and LDA (with methylester derivative of nucelobase) without good results. Last, it was investigated a different synthetic approach by first synthesizing a proper backbone with a chlorine in the β- lactam ring. This chlorine ring should undergo substitution by a nucleobase anion to give the desired PNA monomer. Unluckily also this synthetic route didn’t lead to the desired monomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis explores the effect of chemical nucleoside modification on the physicochemical and biological properties of nucleic acids. Positional alteration on the Watson-Crick edge of purines and pyrimidines, the “C-H” edge of pyrimidines, as well as both the Hoogsteen and sugar edges of purines were attempted by means of copper catalyzed azide-alkyne cycloaddition. For this purpose, nucleic acid building blocks carrying terminal alkynes were synthesized and introduced into oligonucleotides by solid-phase oligonucleotide chemistry. rnOf particular interest was the effect of nucleoside modification on hydrogen bond formation with complementary nucleosides. The attachment of propargyl functionalities onto the N2 of guanosine and the N4 of 5-methylcytosine, respectively, followed by incorporation of the modified analogs into oligonucleotides, was successfully achieved. Temperature dependent UV-absorption melting measurements with duplexes formed between modified oligonucleotides and a variety of complementary strands resulted in melting temperatures for the respective duplexes. As a result, the effect that both the nature and the site of nucleoside modification have on base pairing properties could thus be assisted. rnTo further explore the enzymatic recognition of chemically modified nucleosides, the oligonucleotide containing the N2-modified guanosine derivative on the 5’-end, which was clicked to a fluorescent dye, was subjected to knockdown analyses of the eGFP reporter gene in the presence of increasing concentrations of siRNA duplexes. From these dose-dependent experiments, a clear effect of 5’-labeling on the knockdown efficiency could be seen. In contrast, 3’-labeling was found to be relatively insignificant.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delivery of therapeutic nucleic acid based drugs is still very demanding and difficult to manage and monitor. For this reason, a precise method for the monitoring of RNAi pathways is necessary. This thesis explores a new approach for sensing of potentially therapeutic nucleic acids, using the interaction of so called prodyes with intracellular enzymes in a prodrug manner. To realize this concept, some non-fluorescent, fluorescein based asymmetric dyes were synthesized and their spectroscopic characteristics were studied. Azide-alkyne Click chemistry was applied for conjugation purposes, using a new protocol at weak acidic pH to get intact prodye constructs. Both, an electrophoretic mobility shift assay with polyacrylamide gels and in-cuvette experiments showed remarkable OFF-to-ON behavior of these new siRNA constructs under physiological conditions. After salt-free purification, subsequent hybridization to double-stranded ribonucleic acids and nanoformulation to lipoplexes, the prodye conjugated siRNA was examined in cellular uptake studies for First Contact Imaging. The investigated siRNA-prodye conjugates showed strong sensitivity to esterases, being hydrolyzed at the biolabile function and developing a strong fluorescence which was verified in bulk. As an optimization, a new profluorescent molecule system was designed and synthesized, which has a carbonate as biolabile 6’ protecting group and a highly water soluble 3’ clickable linker. This new non-fluorescent but colored prodye showed 12 - 320 times increased fluorescence intensities between OFF- and ON- states, depending to the deprotection method. This is the first reported molecule model of an asymmetric profluorescent fluorescein, having the very favorable 3’ & 6’ functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been used to study the dynamical and time-averaged characteristics of the DNA triple helix d(T)10âd(A)10âd(T)10. The structures sampled during the trajectory resemble closely the B-type model for the DNA triplex proposed on the basis of NMR data, although there are some subtle differences. Alternative P- and A-type conformations for the triplex, suggested from X-ray experiments, are not predicted to contribute significantly to the structure of the DNA triplex in solution. Comparison with the best available experimental data supports the correctnes of the MD-generated structures. The analysis of the collected data gives a detailed picture of the characteristics of triple-helix DNA. A new and interesting pattern of hydration, specific for triplex DNA, is an important observation. The results suggest that molecular dynamics can be useful for the study of novel nucleic acid structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To assess the effects of the highly reactive molecule of ozone on sound enamel physical properties and its effects on sealing ability. METHODS: The effect of ozone on sealant tag length, microleakage and unfilled area proportion were evaluated on intact and prepared sound molar fissures. Microhardness, contact angle and acid resistance tests were performed on ground sound smooth surfaces. The samples were treated with ozone for 40 seconds (HealOzone). Control samples were treated with air (modified HealOzone) or left untreated. RESULTS: No statistically significant difference was observed between the control and ozone treated samples in all tests. Prepared fissures exhibited no unfilled areas and a statistically significantly lower microleakage compared to intact fissures. Ozone was shown to dehydrate enamel and consequently enhance its microhardness, which was reversible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article gives an overview over the methods used in the low--level analysis of gene expression data generated using DNA microarrays. This type of experiment allows to determine relative levels of nucleic acid abundance in a set of tissues or cell populations for thousands of transcripts or loci simultaneously. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. This includes the design of probes, the experimental design, the image analysis of microarray scanned images, the normalization of fluorescence intensities, the assessment of the quality of microarray data and incorporation of quality information in subsequent analyses, the combination of information across arrays and across sets of experiments, the discovery and recognition of patterns in expression at the single gene and multiple gene levels, and the assessment of significance of these findings, considering the fact that there is a lot of noise and thus random features in the data. For all of these components, access to a flexible and efficient statistical computing environment is an essential aspect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres have emerged as crucial cellular elements in aging and various diseases including cancer. To measure the average length of telomere repeats in cells, we describe our protocols that use fluorescent in situ hybridization (FISH) with labeled peptide nucleic acid (PNA) probes specific for telomere repeats in combination with fluorescence measurements by flow cytometry (flow FISH). Flow FISH analysis can be performed using commercially available flow cytometers, and has the unique advantage over other methods for measuring telomere length of providing multi-parameter information on the length of telomere repeats in thousands of individual cells. The accuracy and reproducibility of the measurements is augmented by the automation of most pipetting (aspiration and dispensing) steps, and by including an internal standard (control cells) with a known telomere length in every tube. The basic protocol for the analysis of nucleated blood cells from 22 different individuals takes about 12 h spread over 2-3 days.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mycoplasma mycoides subsp. mycoides SC, the aetiological agent of contagious bovine pleuropneumonia (CBPP), is considered the most pathogenic of the Mycoplasma species. Its virulence is probably the result of a coordinated action of various components of an antigenically and functionally dynamic surface architecture. The different virulence attributes allow the pathogen to evade the host's immune defence, adhere tightly to the host cell surface, persist and disseminate in the host causing mycoplasmaemia, efficiently import energetically valuable nutrients present in the environment, and release and simultaneously translocate toxic metabolic pathway products to the host cell where they cause cytotoxic effects that are known to induce inflammatory processes and disease. This strategy enables the mycoplasma to exploit the minimal genetic information in its small genome, not only to fulfil the basic functions for its replication but also to damage host cells in intimate proximity thereby acquiring the necessary bio-molecules, such as amino acids and nucleic acid precursors, for its own biosynthesis and survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

QUESTIONS UNDER STUDY: The risk of transfusion-transmitted HBV remains significant in Switzerland, where routine screening for hepatitis B virus (HBV) in blood donations relies solely on serological hepatitis B surface antigen (HBsAg) testing. This study was designed to determine the prevalence of anti-hepatitis B core (anti-HBc) and HBV nucleic acid testing (NAT) positive donations in two different Swiss donor populations, to help in deciding whether supplemental testing may bring additional safety to blood products. METHODS: In a first population of donors, 18143 consecutive donations were screened initially for HBsAg, anti-HBc (with one EIA assay) and with HBV NAT in minipools of 24 donations. The screening repeatedly reactive anti-HBc donations were then "confirmed" with two supplemental anti-HBc assays, an anti-hepatitis B surface assay (anti-HBs) and with single donation HBV NAT. In a second population of donors, 4186 consecutive donations were screened initially with two different anti-HBc assays in addition to the mandatory HBsAg screening test. The screening repeatedly reactive donations with at least one anti-HBc assay were tested for anti-HBs. RESULTS: In the first subset of 18143 donations, 17593 (97.0%) were negative for HBsAg, anti-HBc and HBV NAT in minipools. 549 (3.0%) were HBsAg and HBV NAT negative, but repeatedly reactive for anti-HBc. Of these 549 donations, 287 could not be "confirmed" with two additional anti-HBc assays and were negative with an anti-HBs assay, as well as with single donation HBV NAT. Only 211 (1.2% of the total screened donations) were "confirmed" positive with at least one of two supplemental anti-HBc assays. One repeatedly reactive HBsAg donation, from a first-time donor, was confirmed positive for HBsAg and anti-HBc, as well as with single donation HBV NAT. In the second subset of 4186 donations, 4014 (95.9%) were screened negative for HBsAg and for anti-HBc, tested with two independent anti-HBc assays. 172 donations (4.1%) were HBsAg negative but repeatedly reactive with at least one of the two anti-HBc assays. Of these 172 samples, 86 were reactive with the first anti-HBc assay only, 13 were reactive with the second anti-HBc assay only and 73 (1.7% of the total screened donations) were "confirmed" positive with both anti-HBc assays. CONCLUSION: The prevalence of anti-HBc "confirmed" positive donations in the two Swiss blood donor populations studied was low (<2%) and we found only one HBV NAT positive (HBsAg positive) donation among more than 18000. Concerning blood product safety, an increase in the deferral rate of less than 2% of anti-HBc positive, potentially infectious donors, would in our opinion make routine anti-HBc testing of blood donations cost-effective. There is however still a need for more specific assays to avoid an unacceptably high deferral rate of "false" positive donors. In contrast, the introduction of HBV NAT in minipools gives minimal benefit due to the inadequate sensitivity of the assay. It remains to evaluate more extensively the value of individual donation NAT, alone or in addition to anti-HBc, as supplemental testing in the context of several Swiss blood donor populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: As for Cystic Fibrosis (CF) and many other hereditary diseases there is still a lack in understanding the relationship between genetic (e.g. allelic) and phenotypic diversity. Therefore methods which allow fine quantification of allelic proportions of mRNA transcripts are of high importance. METHODS: We used either genomic DNA (gDNA) or total RNA extracted from nasal cells as starting nucleic acid template for our assay. The subjects included in this study were 9 CF patients compound heterozygous for the F508del mutation and each one F508del homozygous and one wild type homozygous respectively. We established a novel ligation based quantification method which allows fine quantification of the allelic proportions of ss and ds CFTR cDNA. To verify reliability and accuracy of this novel assay we compared it with semiquantitative fluorescent PCR (SQF-PCR). RESULTS: We established a novel assay for allele specific quantification of gene expression which combines the benefits of the specificity of the ligation reaction and the accuracy of quantitative real-time PCR. The comparison with SQF-PCR clearly demonstrates that LASQ allows fine quantification of allelic proportions. CONCLUSION: This assay represents an alternative to other fine quantitative methods such as ARMS PCR and Pyrosequencing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small clusters of gallium oxide, technologically important high temperature ceramic, together with interaction of nucleic acid bases with graphene and small-diameter carbon nanotube are focus of first principles calculations in this work. A high performance parallel computing platform is also developed to perform these calculations at Michigan Tech. First principles calculations are based on density functional theory employing either local density or gradient-corrected approximation together with plane wave and gaussian basis sets. The bulk Ga2O3 is known to be a very good candidate for fabricating electronic devices that operate at high temperatures. To explore the properties of Ga2O3 at nonoscale, we have performed a systematic theoretical study on the small polyatomic gallium oxide clusters. The calculated results find that all lowest energy isomers of GamOn clusters are dominated by the Ga-O bonds over the metal-metal or the oxygen-oxygen bonds. Analysis of atomic charges suggest the clusters to be highly ionic similar to the case of bulk Ga2O3. In the study of sequential oxidation of these slusters starting from Ga2O, it is found that the most stable isomers display up to four different backbones of constituent atoms. Furthermore, the predicted configuration of the ground state of Ga2O is recently confirmed by the experimental result of Neumark's group. Guided by the results of calculations the study of gallium oxide clusters, performance related challenge of computational simulations, of producing high performance computers/platforms, has been addressed. Several engineering aspects were thoroughly studied during the design, development and implementation of the high performance parallel computing platform, rama, at Michigan Tech. In an attempt to stay true to the principles of Beowulf revolutioni, the rama cluster was extensively customized to make it easy to understand, and use - for administrators as well as end-users. Following the results of benchmark calculations and to keep up with the complexity of systems under study, rama has been expanded to a total of sixty four processors. Interest in the non-covalent intereaction of DNA with carbon nanotubes has steadily increased during past several years. This hybrid system, at the junction of the biological regime and the nanomaterials world, possesses features which make it very attractive for a wide range of applicatioins. Using the in-house computational power available, we have studied details of the interaction between nucleic acid bases with graphene sheet as well as high-curvature small-diameter carbon nanotube. The calculated trend in the binding energies strongly suggests that the polarizability of the base molecules determines the interaction strength of the nucleic acid bases with graphene. When comparing the results obtained here for physisorption on the small diameter nanotube considered with those from the study on graphene, it is observed that the interaction strength of nucleic acid bases is smaller for the tube. Thus, these results show that the effect of introducing curvature is to reduce the binding energy. The binding energies for the two extreme cases of negligible curvature (i.e. flat graphene sheet) and of very high curvature (i.e. small diameter nanotube) may be considered as upper and lower bounds. This finding represents an important step towards a better understanding of experimentally observed sequence-dependent interaction of DNA with Carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1964 first proposed by Robin Holliday as a mechanistic model to solve the mystery of how genetic information is exchanged in yeast, the DNA four-way junction or Holliday junction (HJ) was proofed to be the key in- termediate in homologous recombination and became an important tool in the field of DNA origami, computation and nanomachines. Herein we use the assembly of four modified nucleic acid strands into the planar square conformation of this higher order DNA structure to demonstrate in a proof of principle manner the cumulative effect of pyrene moieties interacting inside the junction.[1][2]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papillomaviruses (PV) are double stranded (ds) DNA viruses that infect epithelial cells within the skin or mucosa, most often causing benign neoplasms that spontaneously regress. The immune system plays a key role in the defense against PVs. Since these viruses infect keratinocytes, we wanted to investigate the role of the keratinocyte in initiating an immune response to canine papillomavirus-2 (CPV-2) in the dog. Keratinocytes express a variety of pattern recognition receptors (PRR) to distinguish different cutaneous pathogens and initiate an immune response. We examined the mRNA expression patterns for several recently described cytosolic nucleic acid sensing PRRs in canine monolayer keratinocyte cultures using quantitative reverse transcription-polymerase chain reaction. Unstimulated normal cells were found to express mRNA for melanoma differentiation associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), DNA-dependent activation of interferon regulatory factors, leucine rich repeat flightless interacting protein 1, and interferon inducible gene 16 (IFI16), as well as their adaptor molecules myeloid differentiation primary response gene 88, interferon-β promoter stimulator 1, and endoplasmic reticulum-resident transmembrane protein stimulator of interferon genes. When stimulated with synthetic dsDNA [poly(dA:dT)] or dsRNA [poly(I:C)], keratinocytes responded with increased mRNA expression levels for interleukin-6, tumor necrosis factor-α, interferon-β, RIG-I, IFI16, and MDA5. There was no detectable increase in mRNA expression, however, in keratinocytes infected with CPV-2. Furthermore, CPV-2-infected keratinocytes stimulated with poly(dA:dT) and poly(I:C) showed similar mRNA expression levels for these gene products when compared with expression levels in uninfected cells. These results suggest that although canine keratinocytes contain functional PRRs that can recognize and respond to dsDNA and dsRNA ligands, they do not appear to recognize or initiate a similar response to CPV-2.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmacytoid dendritic cells (pDCs) are a rare population of circulating cells, which selectively express intracellular Toll-like receptors (TLR)-7 and TLR-9 and have the capacity to produce large amounts of type I IFNs (IFN-a/b) in response to viruses or host derived nucleic acid containing complexes. pDCs are normally absent in skin but accumulate in the skin of psoriasis patients where their chronic activation to produce IFN-a/b drives the disease formation. Whether pDCs and their activation to produce IFN-a/b play a functional role in healthy skin is unknown. Here we show that pDCs are rapidly and transiently recruited into healthy human and mouse skin upon epidermal injury. Infiltrating pDCs were found to sense nucleic acids in wounded skin via TLRs, leading to the production of IFN-a/b. The production of IFN-a/b was paralleled by a short lived expression of cathelicidins, which form complexes with extracellular nucleic acids and activated pDCs to produce IFN-a/b in vitro. In vivo, cathelicidins were sufficient but not necessary for the induction of IFN-a/b in wounded skin, suggesting redundancy of this pathway. Depletion of pDCs or inhibition of IFN-a/bR signaling significantly impaired the inflammatory response and delayed re-epithelialization of skin wounds. Thus we uncover a novel role of pDCs in sensing skin injury via TLR mediated recognition of nucleic acids and demonstrate their involvement in the early inflammatory process and wound healing response through the production of IFN-a/b.