917 resultados para Notch signalling pathway


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages regulate cell fate decisions during microbial challenges by carefully titrating signaling events activated by innate receptors such as dectin-1 or Toll-like receptors (TLRs). Here, we demonstrate that dectin-1 activation robustly dampens TLR-induced proinflammatory signature in macrophages. Dectin-1 induced the stabilization of beta-catenin via spleen tyrosine kinase (Syk)-reactive oxygen species (ROS) signals, contributing to the expression of WNT5A. Subsequently, WNT5A-responsive protein inhibitors of activated STAT (PIAS-1) and suppressor of cytokine signaling 1 (SOCS-1) mediate the downregulation of IRAK-1, IRAK-4, and MyD88, resulting in decreased expression of interleukin 12 (IL-12), IL-1 beta, and tumor necrosis factor alpha (TNF-alpha). In vivo activation of dectin-1 with pathogenic fungi or ligand resulted in an increased bacterial burden of Mycobacteria, Klebsiella, Staphylococcus, or Escherichia, with a concomitant decrease in TLR-triggered proinflammatory cytokines. All together, our study establishes a new role for dectin-1-responsive inhibitory mechanisms employed by virulent fungi to limit the proinflammatory environment of the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In cells, N-10-formyltetrahydrofolate (N-10-fTHF) is required for formylation of eubacterial/organellar initiator tRNA and purine nucleotide biosynthesis. Biosynthesis of N-10-fTHF is catalyzed by 5,10-methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) and/or 10-formyltetrahydrofolate synthetase (Fhs). All eubacteria possess FolD, but some possess both FolD and Fhs. However, the reasons for possessing Fhs in addition to FolD have remained unclear. We used Escherichia coli, which naturally lacks fhs, as our model. We show that in E. coli, the essential function of folD could be replaced by Clostridium perfringens fhs when it was provided on a medium-copy-number plasmid or integrated as a single-copy gene in the chromosome. The fhs-supported folD deletion (Delta folD) strains grow well in a complex medium. However, these strains require purines and glycine as supplements for growth in M9 minimal medium. The in vivo levels of N-10-fTHF in the Delta folD strain (supported by plasmid-borne fhs) were limiting despite the high capacity of the available Fhs to synthesize N-10-fTHF in vitro. Auxotrophy for purines could be alleviated by supplementing formate to the medium, and that for glycine was alleviated by engineering THF import into the cells. The Delta folD strain (harboring fhs on the chromosome) showed a high NADP(+)-to-NADPH ratio and hypersensitivity to trimethoprim. The presence of fhs in E. coli was disadvantageous for its aerobic growth. However, under hypoxia, E. coli strains harboring fhs outcompeted those lacking it. The computational analysis revealed a predominant natural occurrence of fhs in anaerobic and facultative anaerobic bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The de novo purine biosynthesis is one of the highly conserved pathways among all organisms and is essential for the cell viability. A clear understanding of the enzymes in this pathway would pave way for the development of antimicrobial and anticancer drugs. Phosphoribosylaminoimidazole-succinocar boxamide (SAICAR) synthetase is one of the enzymes in this pathway that catalyzes ATP dependent ligation of carboxyaminoimidazole ribotide (CAIR) with L-aspartate (ASP). Here, we describe eight crystal structures of this enzyme, in C222(1) and H3 space groups, bound to various substrates and substrate mimics from a hyperthermophilic archaea Pyrococcus horikoshii along with molecular dynamics simulations of the structures with substrates. Complexes exhibit minimal deviation from its apo structure. The CAIR binding site displays a preference for pyrimidine nucleotides. In the ADP.TMP-ASP complex, the ASP binds at a position equivalent to that found in Saccharomyces cerevisiae structure (PDB: 2CNU) and thus, clears the ambiguity regarding ASP's position. A possible mode for the inhibition of the enzyme by CTP and UTP, observed earlier in the yeast enzyme, is clearly illustrated in the structures bound to CMP and UMP. The ADP.Mg2+.PO4.CD/MP complex having a phosphate ion between the ATP and CAIR sites strengthens one of the two probable pathways (proposed in Escherichia coli study) of catalytic mechanism and suggests the possibility of a phosphorylation taking place before the ASP's attack on CAIR. Molecular dynamic simulations of this enzyme along with its substrates at 90 degrees C reveal the relative strengths of substrate binding, possible antagonism and the role of Mg2+ ions. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cellular signalling events are at the core of every adaptive response. Signalling events link environmental changes to physiological responses, consequently allowing cellular and organismal sustenance and survival. Classical approaches to study cellular signalling have relied on a variety of cell disruptive techniques which yield limited kinetic information, while the underlying events are much more complex. In this article, we discuss how modern live cell imaging microscopy has found increasing utilization in revealing spatio temporal dynamics of various signalling pathways. Utilizing the well studied mitogen-activated protein kinase (MAPK) signalling cascade as a template, the design, construction and utilization of `mobile' (translocation proficient) biosensors, suitable for studying MAPK signalling in living cells are described in detail. Experimental setup and results obtained from these biosensors, based on different proteins involved in the MAPK signalling cascade, have been described along with the setup of a microscope optimal for live cell imaging applications. Utilizing the ability to activate or deactivate signalling pathways using defined activators and specific pharmacological inhibitors, we also show how these sensors can yield unique spatial and temporal kinetic information of signalling in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Halogenated nucleosides can be incorporated into the newly synthesized DNA of replicating cells and therefore are commonly used in the detection of proliferating cells in living tissues. Dehalogenation of these modified nucleosides is one of the key pathways involved in DNA repair mediated by the uracil-DNA glycosylase. Herein, we report the first example of a selenium-mediated dehalogenation of halogenated nucleosides. We also show that the mechanism for the debromination is remarkably different from that of deiodination and that the presence of a ribose or deoxyribose moiety in the nucleosides facilitates the deiodination. The results described herein should help in understanding the metabolism of halogenated nucleosides in DNA and RNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640 1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-component systems (TCSs), which contain paired sensor kinase and response regulator proteins, form the primary apparatus for sensing and responding to environmental cues in bacteria. TCSs are thought to be highly specific, displaying minimal cross-talk, primarily due to the co-evolution of the participating proteins. To assess the level of cross-talk between the TCSs of Mycobacterium tuberculosis, we mapped the complete interactome of the M. tuberculosis TCSs using phosphotransfer profiling. Surprisingly, we found extensive crosstalk among the M. tuberculosis TCSs, significantly more than that in the TCSs in Escherichia coli or Caulobacter crescentus, thereby offering an alternate to specificity paradigm in TCS signalling. Nearly half of the interactions we detected were significant novel cross-interactions, unravelling a potentially complex signalling landscape. We classified the TCSs into specific `one-to-one' and promiscuous `one-to-many' and `many-to-one' circuits. Using mathematical modelling, we deduced that the promiscuous signalling observed can explain several currently confounding observations about M. tuberculosis TCSs. Our findings suggest an alternative paradigm of bacterial signalling with significant cross-talk between TCSs yielding potentially complex signalling landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estrogen signalling is critical for ovarian differentiation in reptiles with temperature-dependent sex determination (TSD). To elucidate the involvement of estrogen in this process, adrenal-kidney-gonadal (AKG) expression of estrogen receptor (ER alpha) was studied at female-producing temperature (FPT) in the developing embryos of the lizard, Calotes versicolor which exhibits a distinct pattern of TSD. The eggs of this lizard were incubated at 31.5 +/- 0.5 degrees C (100% FPT). The torso of embryos containing adrenal-kidney-gonadal complex (AKG) was collected during different stages of development and subjected to Western blotting and immunohistochemistry analysis. The ER alpha, antibody recognized two protein bands with apparent molecular weight similar to 55 and similar to 45 kDa in the total protein extracts of embryonic AKG complex of C. versicolor. The observed results suggest the occurrence of isoforms of ER alpha. The differential expression of two different protein isoforms may reveal their distinct role in cell proliferation during gonadal differentiation. This is the first report to reveal two isoforms of the ER alpha in a reptile during development. Immunohistochemical studies reveal a weak, but specific, cytoplasmic ER alpha immunostaining exclusively in the AKG during late thermo-sensitive period suggesting the responsiveness of AKG to estrogens before gonadal differentiation at FPT. Further, cytoplasmic as well as nuclear expression of ER alpha in the medulla and in oogonia of the cortex (faint activity) at gonadal differentiation stage suggests that the onset of gonadal estrogen activity coincides with sexual differentiation of gonad. Intensity and pattern of the immunoreactions of ER alpha in the medullary region at FPT suggest endogenous production of estrogen which may act in a paracrine fashion to induce neighboring cells into ovarian differentiation pathway. (C) 2014 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activation of apoptosis signal regulating kinase 1 (ASK1)-p38 MAPK death signaling cascade is irn plicated in the death of dopaminergic neurons in substantia nigra in Parkinson's disease (PD). We investigated upstream activators of ASK1 using an MPTP mouse model of parkinsonism and assessed the temporal cascade of death signaling in ventral midbrain (VMB) and striatum (ST). MPTP selectively activated ASK1 and downstream 1)38 MAPK in a time dependent manner in VMB alone. This occurred through selective protein thiol oxidation of the redox-sensitive thiol disulfide oxidoreductase, thiorcdoxin (Trxl), resulting in release of its inhibitory association with ASK1, while glutathione-S-transferase ji 1 (GSTM1) remained in reduced form in association with ASK1. Levels of tumor necrosis factor (TNF), a known activator of ASK1, increased early after MPTP in VMB. Protein ovariation netvvork analysis (PCNA) using protein states as nodes revealed TNF to be an important node regulating the ASK1 signaling cascade. In confirmation, blocking MPTP-mecliated TNF signaling through intrathecal administration of TNFneutralizing antibody prevented Trxl oxidation and downstream ASK1-p38 MAPK activation. Averting an early increase in TNF, which leads to protein thiol oxidation resulting in activation of ASK1-p38 signaling, may be critical for neuroprotection in PD. Importantly, network analysis can help in understanding the cause/effect relationship within protein networks in complex disease states. (C) 2015 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pluripotent stem cells are being actively studied as a cell source for regenerating damaged liver. For long-term survival of engrafting cells in the body, not only do the cells have to execute liver-specific function but also withstand the physical strains and invading pathogens. The cellular innate immune system orchestrated by the interferon (IFN) pathway provides the first line of defense against pathogens. The objective of this study is to assess the innate immune function as well as to systematically profile the IFN-induced genes during hepatic differentiation of pluripotent stem cells. To address this objective, we derived endodermal cells (day 5 post-differentiation), hepatoblast (day 15) and hepatocyte-like cells (day 21) from human embryonic stem cells (hESCs). Day 5, 15 and 21 cells were stimulated with IFN-alpha and subjected to IFN pathway analysis. Transcriptome analysis was carried out by RNA sequencing. The results showed that the IFN-alpha treatment activated STAT-JAK pathway in differentiating cells. Transcriptome analysis indicated stage specific expression of classical and non-classical IFN-stimulated genes (ISGs). Subsequent validation confirmed the expression of novel ISGs including RASGRP3, CLMP and TRANK1 by differentiated hepatic cells upon IFN treatment. Hepatitis C virus replication in hESC-derived hepatic cells induced the expression of ISGs - LAMP3, ETV7, RASGRP3, and TRANK1. The hESC-derived hepatic cells contain intact innate system and can recognize invading pathogens. Besides assessing the tissue-specific functions for cell therapy applications, it may also be important to test the innate immune function of engrafting cells to ensure adequate defense against infections and improve graft survival. (C) 2015 The Authors. Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Naturally occurring compounds are considered as attractive candidates for cancer treatment and prevention. Quercetin and ellagic acid are naturally occurring flavonoids abundantly seen in several fruits and vegetables. In the present study, we evaluate and compare antitumor efficacies of quercetin and ellagic acid in animal models and cancer cell lines in a comprehensive manner. We found that quercetin induced cytotoxicity in leukemic cells in a dose-dependent manner, while ellagic acid showed only limited toxicity. Besides leukemic cells, quercetin also induced cytotoxicity in breast cancer cells, however, its effect on normal cells was limited or none. Further, quercetin caused S phase arrest during cell cycle progression in tested cancer cells. Quercetin induced tumor regression in mice at a concentration 3-fold lower than ellagic acid. Importantly, administration of quercetin lead to -5 fold increase in the life span in tumor bearing mice compared to that of untreated controls. Further, we found that quercetin interacts with DNA directly, and could be one of the mechanisms for inducing apoptosis in both, cancer cell lines and tumor tissues by activating the intrinsic pathway. Thus, our data suggests that quercetin can be further explored for its potential to be used in cancer therapeutics and combination therapy.