978 resultados para Nonlinear Equation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a method to reconstruct 3D surfaces of silicon wafers from 2D images of printed circuits taken with a scanning electron microscope. Our reconstruction method combines the physical model of the optical acquisition system with prior knowledge about the shapes of the patterns in the circuit; the result is a shape-from-shading technique with a shape prior. The reconstruction of the surface is formulated as an optimization problem with an objective functional that combines a data-fidelity term on the microscopic image with two prior terms on the surface. The data term models the acquisition system through the irradiance equation characteristic of the microscope; the first prior is a smoothness penalty on the reconstructed surface, and the second prior constrains the shape of the surface to agree with the expected shape of the pattern in the circuit. In order to account for the variability of the manufacturing process, this second prior includes a deformation field that allows a nonlinear elastic deformation between the expected pattern and the reconstructed surface. As a result, the minimization problem has two unknowns, and the reconstruction method provides two outputs: 1) a reconstructed surface and 2) a deformation field. The reconstructed surface is derived from the shading observed in the image and the prior knowledge about the pattern in the circuit, while the deformation field produces a mapping between the expected shape and the reconstructed surface that provides a measure of deviation between the circuit design models and the real manufacturing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling between topography, waves and currents in the surf zone may selforganize to produce the formation of shore-transverse or shore-oblique sand bars on an otherwise alongshore uniform beach. In the absence of shore-parallel bars, this has been shown by previous studies of linear stability analysis, but is now extended to the finite-amplitude regime. To this end, a nonlinear model coupling wave transformation and breaking, a shallow-water equations solver, sediment transport and bed updating is developed. The sediment flux consists of a stirring factor multiplied by the depthaveraged current plus a downslope correction. It is found that the cross-shore profile of the ratio of stirring factor to water depth together with the wave incidence angle primarily determine the shape and the type of bars, either transverse or oblique to the shore. In the latter case, they can open an acute angle against the current (upcurrent oriented) or with the current (down-current oriented). At the initial stages of development, both the intensity of the instability which is responsible for the formation of the bars and the damping due to downslope transport grow at a similar rate with bar amplitude, the former being somewhat stronger. As bars keep on growing, their finite-amplitude shape either enhances downslope transport or weakens the instability mechanism so that an equilibrium between both opposing tendencies occurs, leading to a final saturated amplitude. The overall shape of the saturated bars in plan view is similar to that of the small-amplitude ones. However, the final spacings may be up to a factor of 2 larger and final celerities can also be about a factor of 2 smaller or larger. In the case of alongshore migrating bars, the asymmetry of the longshore sections, the lee being steeper than the stoss, is well reproduced. Complex dynamics with merging and splitting of individual bars sometimes occur. Finally, in the case of shore-normal incidence the rip currents in the troughs between the bars are jet-like while the onshore return flow is wider and weaker as is observed in nature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A parametric procedure for the blind inversion of nonlinear channels is proposed, based on a recent method of blind source separation in nonlinear mixtures. Experiments show that the proposed algorithms perform efficiently, even in the presence of hard distortion. The method, based on the minimization of the output mutual information, needs the knowledge of log-derivative of input distribution (the so-called score function). Each algorithm consists of three adaptive blocks: one devoted to adaptive estimation of the score function, and two other blocks estimating the inverses of the linear and nonlinear parts of the channel, (quasi-)optimally adapted using the estimated score functions. This paper is mainly concerned by the nonlinear part, for which we propose two parametric models, the first based on a polynomial model and the second on a neural network, while [14, 15] proposed non-parametric approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When dealing with nonlinear blind processing algorithms (deconvolution or post-nonlinear source separation), complex mathematical estimations must be done giving as a result very slow algorithms. This is the case, for example, in speech processing, spike signals deconvolution or microarray data analysis. In this paper, we propose a simple method to reduce computational time for the inversion of Wiener systems or the separation of post-nonlinear mixtures, by using a linear approximation in a minimum mutual information algorithm. Simulation results demonstrate that linear spline interpolation is fast and accurate, obtaining very good results (similar to those obtained without approximation) while computational time is dramatically decreased. On the other hand, cubic spline interpolation also obtains similar good results, but due to its intrinsic complexity, the global algorithm is much more slow and hence not useful for our purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although sources in general nonlinear mixturm arc not separable iising only statistical independence, a special and realistic case of nonlinear mixtnres, the post nonlinear (PNL) mixture is separable choosing a suited separating system. Then, a natural approach is based on the estimation of tho separating Bystem parameters by minimizing an indcpendence criterion, like estimated mwce mutual information. This class of methods requires higher (than 2) order statistics, and cannot separate Gaarsian sources. However, use of [weak) prior, like source temporal correlation or nonstationarity, leads to other source separation Jgw rithms, which are able to separate Gaussian sourra, and can even, for a few of them, works with second-order statistics. Recently, modeling time correlated s011rces by Markov models, we propose vcry efficient algorithms hmed on minimization of the conditional mutual information. Currently, using the prior of temporally correlated sources, we investigate the fesihility of inverting PNL mixtures with non-bijectiw non-liacarities, like quadratic functions. In this paper, we review the main ICA and BSS results for riunlinear mixtures, present PNL models and algorithms, and finish with advanced resutts using temporally correlated snu~sm

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a study of binary mixtures of Bose-Einstein condensates confined in a double-well potential within the framework of the mean field Gross-Pitaevskii (GP) equation. We re-examine both the single component and the binary mixture cases for such a potential, and we investigate what are the situations in which a simpler two-mode approach leads to an accurate description of their dynamics. We also estimate the validity of the most usual dimensionality reductions used to solve the GP equations. To this end, we compare both the semi-analytical two-mode approaches and the numerical simulations of the one-dimensional (1D) reductions with the full 3D numerical solutions of the GP equation. Our analysis provides a guide to clarify the validity of several simplified models that describe mean-field nonlinear dynamics, using an experimentally feasible binary mixture of an F = 1 spinor condensate with two of its Zeeman manifolds populated, m = ±1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study energy relaxation in thermalized one-dimensional nonlinear arrays of the Fermi-Pasta-Ulam type. The ends of the thermalized systems are placed in contact with a zero-temperature reservoir via damping forces. Harmonic arrays relax by sequential phonon decay into the cold reservoir, the lower-frequency modes relaxing first. The relaxation pathway for purely anharmonic arrays involves the degradation of higher-energy nonlinear modes into lower-energy ones. The lowest-energy modes are absorbed by the cold reservoir, but a small amount of energy is persistently left behind in the array in the form of almost stationary low-frequency localized modes. Arrays with interactions that contain both a harmonic and an anharmonic contribution exhibit behavior that involves the interplay of phonon modes and breather modes. At long times relaxation is extremely slow due to the spontaneous appearance and persistence of energetic high-frequency stationary breathers. Breather behavior is further ascertained by explicitly injecting a localized excitation into the thermalized arrays and observing the relaxation behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to adapt a nonlinear model (Wang and Engel - WE) for simulating the phenology of maize (Zea mays L.), and to evaluate this model and a linear one (thermal time), in order to predict developmental stages of a field-grown maize variety. A field experiment, during 2005/2006 and 2006/2007 was conducted in Santa Maria, RS, Brazil, in two growing seasons, with seven sowing dates each. Dates of emergence, silking, and physiological maturity of the maize variety BRS Missões were recorded in six replications in each sowing date. Data collected in 2005/2006 growing season were used to estimate the coefficients of the two models, and data collected in the 2006/2007 growing season were used as independent data set for model evaluations. The nonlinear WE model accurately predicted the date of silking and physiological maturity, and had a lower root mean square error (RMSE) than the linear (thermal time) model. The overall RMSE for silking and physiological maturity was 2.7 and 4.8 days with WE model, and 5.6 and 8.3 days with thermal time model, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of nonequilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation that is compared with others derived from the kinetic theory and projector operator techniques. This equation exhibits violation of the fluctuation-dissipation theorem. By implementing the hydrodynamic regime described by the first moments of the nonequilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor, allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The simplicity and generality of the method we propose makes it applicable to more complex situations, often encountered in problems of soft-condensed matter, in which not only one but more degrees of freedom are coupled to a nonequilibrium bath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use the mesoscopic nonequilibrium thermodynamics theory to derive the general kinetic equation of a system in the presence of potential barriers. The result is applied to a description of the evolution of systems whose dynamics is influenced by entropic barriers. We analyze in detail the case of diffusion in a domain of irregular geometry in which the presence of the boundaries induces an entropy barrier when approaching the exact dynamics by a coarsening of the description. The corresponding kinetic equation, named the Fick-Jacobs equation, is obtained, and its validity is generalized through the formulation of a scaling law for the diffusion coefficient which depends on the shape of the boundaries. The method we propose can be useful to analyze the dynamics of systems at the nanoscale where the presence of entropy barriers is a common feature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study biased, diffusive transport of Brownian particles through narrow, spatially periodic structures in which the motion is constrained in lateral directions. The problem is analyzed under the perspective of the Fick-Jacobs equation, which accounts for the effect of the lateral confinement by introducing an entropic barrier in a one-dimensional diffusion. The validity of this approximation, based on the assumption of an instantaneous equilibration of the particle distribution in the cross section of the structure, is analyzed by comparing the different time scales that characterize the problem. A validity criterion is established in terms of the shape of the structure and of the applied force. It is analytically corroborated and verified by numerical simulations that the critical value of the force up to which this description holds true scales as the square of the periodicity of the structure. The criterion can be visualized by means of a diagram representing the regions where the Fick-Jacobs description becomes inaccurate in terms of the scaled force versus the periodicity of the structure.