955 resultados para Noise detection
Resumo:
Wind power has become one of the popular renewable resources all over the world and is anticipated to occupy 12% of the total global electricity generation capacity by 2020. For the harsh environment that the wind turbine operates, fault diagnostic and condition monitoring are important for wind turbine safety and reliability. This paper employs a systematic literature review to report the most recent promotions in the wind turbine fault diagnostic, from 2005 to 2012. The frequent faults and failures in wind turbines are considered and different techniques which have been used by researchers are introduced, classified and discussed.
Resumo:
In this paper, a polynomial time algorithm is presented for solving the Eden problem for graph cellular automata. The algorithm is based on our neighborhood elimination operation which removes local neighborhood configurations which cannot be used in a pre-image of a given configuration. This paper presents a detailed derivation of our algorithm from first principles, and a detailed complexity and accuracy analysis is also given. In the case of time complexity, it is shown that the average case time complexity of the algorithm is \Theta(n^2), and the best and worst cases are \Omega(n) and O(n^3) respectively. This represents a vast improvement in the upper bound over current methods, without compromising average case performance.
Resumo:
This project was a step forward in developing intrusion detection systems in distributed environments such as web services. It investigates a new approach of detection based on so-called "taint-marking" techniques and introduces a theoretical framework along with its implementation in the Linux kernel.
Resumo:
Residential balcony design influences speech interference levels caused by road traffic noise and a simplified design methodology is needed for optimising balcony acoustic treatments. This research comprehensively assesses speech interference levels and benefits of nine different balcony designs situated in urban street canyons through the use of a combined direct, specular reflection and diffuse reflection path theoretical model. This thesis outlines the theory, analysis and results that lead up to the presentation of a practical design guide which can be used to predict the acoustic effects of balcony geometry and acoustic treatments in streets with variable geometry and acoustic characteristics.
Resumo:
Our results demonstrate that photorefractive residual amplitude modulation (RAM) noise in electro-optic modulators (EOMs) can be reduced by modifying the incident beam intensity distribution. Here we report an order of magnitude reduction in RAM when beams with uniform intensity (flat-top) profiles, generated with an LCOS-SLM, are used instead of the usual fundamental Gaussian mode (TEM00). RAM arises from the photorefractive amplified scatter noise off the defects and impurities within the crystal. A reduction in RAM is observed with increasing intensity uniformity (flatness), which is attributed to a reduction in space charge field on the beam axis. The level of RAM reduction that can be achieved is physically limited by clipping at EOM apertures, with the observed results agreeing well with a simple model. These results are particularly important in applications where the reduction of residual amplitude modulation to 10^-6 is essential.
Resumo:
This paper elaborates the approach used by the Applied Data Mining Research Group (ADMRG) for the Social Event Detection (SED) Tasks of the 2013 MediaEval Benchmark. We extended the constrained clustering algorithm to apply to the first semi-supervised clustering task, and we compared several classifiers with Latent Dirichlet Allocation as feature selector in the second event classification task. The proposed approach focuses on scalability and efficient memory allocation when applied to a high dimensional data with large clusters. Results of the first task show the effectiveness of the proposed method. Results from task 2 indicate that attention on the imbalance categories distributions is needed.
Resumo:
There has been considerable recent work on the development of energy conserving one-step methods that are not symplectic. Here we extend these ideas to stochastic Hamiltonian problems with additive noise and show that there are classes of Runge-Kutta methods that are very effective in preserving the expectation of the Hamiltonian, but care has to be taken in how the Wiener increments are sampled at each timestep. Some numerical simulations illustrate the performance of these methods.
Resumo:
An analytical evaluation of the higher ac harmonic components derived from large amplitude Fourier transformed voltammetry is provided for the reversible oxidation of ferrocenemethanol (FcMeOH) and oxidation of uric acid by an EEC mechanism in a pH 7.4 phosphate buffer at a glassy carbon (GC) electrode. The small background current in the analytically optimal fifth harmonic is predominantly attributed to faradaic current associated with the presence of electroactive functional groups on the GC electrode surface, rather than to capacitive current which dominates the background in the dc, and the initial three ac harmonics. The detection limits for the dc and the first to fifth harmonic ac components are 1.9, 5.89, 2.1, 2.5, 0.8, and 0.5 µM for FcMeOH, respectively, using a sine wave modulation of 100 mV at 21.46 Hz and a dc sweep rate of 111.76 mV s−1. Analytical performance then progressively deteriorates in the sixth and higher harmonics. For the determination of uric acid, the capacitive background current was enhanced and the reproducibility lowered by the presence of surface active uric acid, but the rapid overall 2e− rather than 1e– electron transfer process gives rise to a significantly enhanced fifth harmonic faradaic current which enabled a detection limit of 0.3 µM to be achieved which is similar to that reported using chemically modified electrodes. Resolution of overlapping voltammetric signals for a mixture of uric acid and dopamine is also achieved using higher fourth or fifth harmonic components, under very low background current conditions. The use of higher fourth and fifth harmonics exhibiting highly favorable faradaic to background (noise) current ratios should therefore be considered in analytical applications under circumstances where the electron transfer rate is fast.
Resumo:
A nanostructured gold surface consisting of closely packed outwardly growing spikes is investigated for the electrochemical detection of dopamine and cytochrome c. A significant electrocatalytic effect for the electrooxidation of both dopamine and ascorbic acid at the nanostructured electrode was found due to the presence of surface active sites which allowed the detection of dopamine in the presence of excess ascorbic acid to be achieved by differential pulse voltammetry. By simple modification with a layer of Nafion, the enhanced electrocatalytic properties of the nanostructured surface was maintained while increasing the selectivity of dopamine detection in the presence of interfering species such as excess ascorbic and uric acids. Also, upon modification of the nanostructured surface with a monolayer of cysteine, the electrochemical response of immobilised cytochrome c in two distinct conformations was observed. This opens up the possibility of using such a nanostructured surface for the characterisation of other biomolecules and in bio-electroanalytical applications.
Resumo:
Stress corrosion cracking (SCC) is a well known form of environmental attack in low carat gold jewellery. It is desirable to have a quick, easy and cost effective way to detect SCC in alloys and prevent them from being used and later failing in their application. A facile chemical method to investigate SCC of 9 carat gold alloys is demonstrated. It involves a simple application of tensile stress to a wire sample in a corrosive environment such as 1–10 % FeCl3 which induces failure in less than 5 minutes. In this study three quaternary (Au, Ag, Cu and Zn) 9 carat gold alloy compositions were investigated for their resistance to SCC and the relationship between time to failure and processing conditions is studied. It is envisaged that the use of such a rapid and facile screening procedure at the production stage may readily identify alloy treatments that produce jewellery that will be susceptible to SCC in its lifetime.
Resumo:
This paper presents a new framework for distributed intrusion detection based on taint marking. Our system tracks information flows between applications of multiple hosts gathered in groups (i.e., sets of hosts sharing the same distributed information flow policy) by attaching taint labels to system objects such as files, sockets, Inter Process Communication (IPC) abstractions, and memory mappings. Labels are carried over the network by tainting network packets. A distributed information flow policy is defined for each group at the host level by labeling information and defining how users and applications can legally access, alter or transfer information towards other trusted or untrusted hosts. As opposed to existing approaches, where information is most often represented by two security levels (low/high, public/private, etc.), our model identifies each piece of information within a distributed system, and defines their legal interaction in a fine-grained manner. Hosts store and exchange security labels in a peer to peer fashion, and there is no central monitor. Our IDS is implemented in the Linux kernel as a Linux Security Module (LSM) and runs standard software on commodity hardware with no required modification. The only trusted code is our modified operating system kernel. We finally present a scenario of intrusion in a web service running on multiple hosts, and show how our distributed IDS is able to report security violations at each host level.
Resumo:
In this paper, a refined classic noise prediction method based on the VISSIM and FHWA noise prediction model is formulated to analyze the sound level contributed by traffic on the Nanjing Lukou airport connecting freeway before and after widening. The aim of this research is to (i) assess the traffic noise impact on the Nanjing University of Aeronautics and Astronautics (NUAA) campus before and after freeway widening, (ii) compare the prediction results with field data to test the accuracy of this method, (iii) analyze the relationship between traffic characteristics and sound level. The results indicate that the mean difference between model predictions and field measurements is acceptable. The traffic composition impact study indicates that buses (including mid-sizedtrucks) and heavy goods vehicles contribute a significant proportion of total noise power despite their low traffic volume. In addition, speed analysis offers an explanation for the minor differences in noise level across time periods. Future work will aim at reducing model error, by focusing on noise barrier analysis using the FEM/BEM method and modifying the vehicle noise emission equation by conducting field experimentation.
Resumo:
This paper presents an investigation into event detection in crowded scenes, where the event of interest co-occurs with other activities and only binary labels at the clip level are available. The proposed approach incorporates a fast feature descriptor from the MPEG domain, and a novel multiple instance learning (MIL) algorithm using sparse approximation and random sensing. MPEG motion vectors are used to build particle trajectories that represent the motion of objects in uniform video clips, and the MPEG DCT coefficients are used to compute a foreground map to remove background particles. Trajectories are transformed into the Fourier domain, and the Fourier representations are quantized into visual words using the K-Means algorithm. The proposed MIL algorithm models the scene as a linear combination of independent events, where each event is a distribution of visual words. Experimental results show that the proposed approaches achieve promising results for event detection compared to the state-of-the-art.
Resumo:
OBJECTIVES: To provide an overview of 1) traditional methods of skin cancer early detection, 2) current technologies for skin cancer detection, and 3) evolving practice models of early detection. DATA SOURCES: Peer-reviewed databased articles and reviews, scholarly texts, and Web-based resources. CONCLUSION: Early detection of skin cancer through established methods or newer technologies is critical for reducing both skin cancer mortality and the overall skin cancer burden. IMPLICATIONS FOR NURSING PRACTICE: A basic knowledge of recommended skin examination guidelines and risk factors for skin cancer, traditional methods to further examine lesions that are suspicious for skin cancer and evolving detection technologies can guide patient education and skin inspection decisions.
Resumo:
To the editor...