982 resultados para Nitrogen fertilizer
Resumo:
Nitrogen and phosphorus requirements of a chain-forming diatom, Skeletonema costatum (Greville) Cleve, collected from Yatsushiro Sea, Japan, were investigated in a laboratory culture experiment. Sodium nitrate and sodium glycerophosphate were used as nitrogen and phosphorus sources, respectively. Cultures were grown in modified Provasoli's ASP2NTA medium (Provasoli et al. 1957) at 25±1°C, light intensity 60 µE mˉ² secˉ¹ and photoperiod 12:12-h, L:D cycle. Optimum growth was observed at nitrate concentrations of 3-10 mglˉ¹ and phosphate concentrations of 1.5-15 mglˉ¹. Adequate growth was also found at the nitrate concentration of up to as high as 300 mglˉ¹. Significantly poorer growth was found at lower nitrate (<3.0 mglˉ¹) and higher phosphate (>15 mglˉ¹) concentrations. From the present study, it is concluded that S. costatum can grow well at wide ranges of nitrate concentrations but is sensitive to higher phosphate concentrations.
Resumo:
Changes in the major protein nitrogen fractions (sarcoplasmic, myofibrillar, stroma) have been studied in two species of prawns and in oil sardine held in ice storage. Myofibrillar proteins were observed to get denatured at a rapid rate as determined by salt extractability method. The sarcoplasmic proteins were not denatured to any considerable extent. With sardine however, the extraction of myofibrillar proteins was inhibited rather in the uniced condition itself presumably owing to the presence of free fatty acids.
Resumo:
Specific activities of acid, alkaline and neutral proteases in liver, muscle, brain, and gill of fish exposed to 50 ppm ambient carbamide for 15, 30 and 60 days and in control were estimated. It was observed that carbamide even at low concentration of 50 ppm inhibited proteolysis and favoured protein synthesis.
Resumo:
Nitrogen can have numerous effects on diamond-like carbon: it can dope, it can form the hypothetical superhard compound C3N4, or it can create fullerene-like bonding structures. We studied amorphous carbon nitrogen films deposited by a filtered cathodic vacuum arc as a function of nitrogen content, ion energy and deposition temperature. The incorporation of nitrogen from 10-2 to 10 at% was measured by secondary ion mass spectrometry and elastic recoil detection analysis and was found to vary slightly sublinearly with N2 partial pressure during deposition. In the doping regime from 0 to about 0.4% N, the conductivity changes while the sp3 content and optical gap remain constant. From 0.4 to approximately 10% N, existing sp2 sites condense into clusters and reduce the band gap. Nitrogen contents over 10% change the bonding from mainly sp3 to mainly sp2. Ion energies between 20 and 250 eV do not greatly modify this behaviour. Deposition at higher temperatures causes a sudden loss of sp3 bonding above about 150 °C. Raman spectroscopy and optical gap data show that existing sp2 sites begin to cluster below this temperature, and the clustering continues above this temperature. This transition is found to vary only weakly with nitrogen addition, for N contents below 10%.
Resumo:
A 120-day long experiment was conducted to find out the effects of urea plus triple super
phosphate (UT), cow manure (CM) and poultry manure (PM) having iso-nil:rogen
content on pond productivity and fish yield. Three fertilizer treatments, with three
replicates each, were randomly assigned into nine earthen ponds of 100 m2 each. The
stocking fish were rohu (Labeo ruhita), catla ( Catla catla) and mrigal ( Cirrhinus
mrigala) in each treatment pond at the rate of 10000/ha with the ratio of 1:1:1. All ponds
were fertilized fortnightly at the rate of 125 kg/ha urea plus 100 kg TSP/ha, 7000 kg/ha
cow manure and 3500 kg/ha poultry manure for the treatment of UT, CM and PM,
respectively, having an iso-nitrogen content of 56 kg in each. Though the physicochemical
water quality parameters were more or less similar in all treatment ponds, the
chlorophyll-a content and abundance of total plankton were significantly higher (P <
0.05) in the ponds receiving the treatment PM. Final growth as well as per unit
production of fish was significantly higher (p
Resumo:
Influence of two different forms of nitrogen on growth and physiological aspects of water-cultured seedlings of Rhizophora apiculata was studied. Of the two forms of nitrogen supplied to the growth medium, ammonium nitrogen was better than nitrate nitrogen by exhibiting increased dry matter production, shoot length, leaf area and also enhanced the contents of carotenoids, chlorophylls and their presence in photosystems and light harvesting protein complex.
Resumo:
A 120 day long experiment was conducted to find out the effects of cow manure with urea and triple super phosphate (CUT), poultry manure with urea and triple super phosphate (PUT) and cow manure with poultry manure (CP) having similar quantities of nitrogen and phosphorus on pond productivity and fish yield. The stocking fish were rohu (Labeo rohita), catla ( Catla catla) and mrigal ( Cirrhinus mrigala) in each treatment pond at the rate of 10000/ha. All ponds were fertilized fortnightly at the rate of 4000 kg/ha cow manure with 62 kg/ha urea and 65 kg/ha TSP, 2700 kg/ha poultry manure with 62 kg/ha urea and 16 kg/ha TSP, and 4000kg/ha cow manure with 2700 kg/ha poultry manure for the treatment CUT, PUT and CP respectively. Each treatment contained an iso-nitrogen and iso-phosphorus of 56 kg and 46 kg respectively. Though the physico-chemical parameters were more or less similar in all ponds, the chlorophyll-a content and abundance of total plankton were significantly higher (P< 0.05) in the ponds receiving the fertilizer treatment of PUT than those of other treatments. Final growth as well as per unit production of fish of treatment PUT (1773 kg/ha) was significantly higher (P< 0.05) than that of treatment CP (1528 kg/ha) followed by that of treatment CUT (1336 kg/ha). The over all results showed that poultry manure with urea and triple super phosphate proved to be superior to cow manure with urea and triple super phosphate, and poultry manure with cow manure, even when nitrogen and phosphorus content was similar, in carp polyculture system under prevailing conditions.
Resumo:
The effect of the physicochemical parameters of water and soil on the distribution of nitrogen-fixing bacteria and their nitrogen-fixing capacity was studied. Four species of nitrogen-fixing bacteria, e. g. Azotobacter chroococcum, A. vinelandii, A. beijerinckii and A. armeniacus, were recorded from water and soil samples of Mumbai coast. A higher number of bacterial populations were observed in sediment than in water samples. A positive correlation was observed between the dissolved organic matter and nitrogen fixing bacterial populations of water as well as between available phosphorus and the nitrogen-fixing bacteria of sediment. The nitrogen-fixing capacity of A. chroococcum was found to be 1.076 nmol C sub(2) H sub(4)/l/d and that of A. vinelandii was 0.965 nmol C sub(2) H sub(4)/l/d. Station 1 showed higher level of nitrogenase activity in comparison to other four stations.