880 resultados para Network-based
Resumo:
Abstract This thesis proposes a set of adaptive broadcast solutions and an adaptive data replication solution to support the deployment of P2P applications. P2P applications are an emerging type of distributed applications that are running on top of P2P networks. Typical P2P applications are video streaming, file sharing, etc. While interesting because they are fully distributed, P2P applications suffer from several deployment problems, due to the nature of the environment on which they perform. Indeed, defining an application on top of a P2P network often means defining an application where peers contribute resources in exchange for their ability to use the P2P application. For example, in P2P file sharing application, while the user is downloading some file, the P2P application is in parallel serving that file to other users. Such peers could have limited hardware resources, e.g., CPU, bandwidth and memory or the end-user could decide to limit the resources it dedicates to the P2P application a priori. In addition, a P2P network is typically emerged into an unreliable environment, where communication links and processes are subject to message losses and crashes, respectively. To support P2P applications, this thesis proposes a set of services that address some underlying constraints related to the nature of P2P networks. The proposed services include a set of adaptive broadcast solutions and an adaptive data replication solution that can be used as the basis of several P2P applications. Our data replication solution permits to increase availability and to reduce the communication overhead. The broadcast solutions aim, at providing a communication substrate encapsulating one of the key communication paradigms used by P2P applications: broadcast. Our broadcast solutions typically aim at offering reliability and scalability to some upper layer, be it an end-to-end P2P application or another system-level layer, such as a data replication layer. Our contributions are organized in a protocol stack made of three layers. In each layer, we propose a set of adaptive protocols that address specific constraints imposed by the environment. Each protocol is evaluated through a set of simulations. The adaptiveness aspect of our solutions relies on the fact that they take into account the constraints of the underlying system in a proactive manner. To model these constraints, we define an environment approximation algorithm allowing us to obtain an approximated view about the system or part of it. This approximated view includes the topology and the components reliability expressed in probabilistic terms. To adapt to the underlying system constraints, the proposed broadcast solutions route messages through tree overlays permitting to maximize the broadcast reliability. Here, the broadcast reliability is expressed as a function of the selected paths reliability and of the use of available resources. These resources are modeled in terms of quotas of messages translating the receiving and sending capacities at each node. To allow a deployment in a large-scale system, we take into account the available memory at processes by limiting the view they have to maintain about the system. Using this partial view, we propose three scalable broadcast algorithms, which are based on a propagation overlay that tends to the global tree overlay and adapts to some constraints of the underlying system. At a higher level, this thesis also proposes a data replication solution that is adaptive both in terms of replica placement and in terms of request routing. At the routing level, this solution takes the unreliability of the environment into account, in order to maximize reliable delivery of requests. At the replica placement level, the dynamically changing origin and frequency of read/write requests are analyzed, in order to define a set of replica that minimizes communication cost.
Resumo:
Within the framework of the Rare Cancer Network Study, we examined 30 patients suffering from small cell neuroendocrine prostate cancer, either in an early/localized or an advanced/metastatic stage. Patients were treated with cisplatin-based chemotherapy, with or without pelvic radiotherapy. Two patients with early disease achieved complete remission for a duration of 19 and 22 months. Three patients with advanced disease achieved complete remission for 6, 7, and 54 months, respectively. Twenty-five patients succumbed to massive local and/or distant failure. No patient presented with brain metastases as the initial site of relapse. Small cell neuroendocrine prostate carcinoma is a very aggressive disease with a poor prognosis, even in its localized form. Despite initial response, the common cisplatin-based chemotherapy plus radiotherapy failed to improve outcome markedly. Improvement will come from understanding the biology of the disease and integrating new targeted therapies into the treatment of this rare and aggressive tumor.
Resumo:
One of the most relevant difficulties faced by first-year undergraduate students is to settle into the educational environment of universities. This paper presents a case study that proposes a computer-assisted collaborative experience designed to help students in their transition from high school to university. This is done by facilitating their first contact with the campus and its services, the university community, methodologies and activities. The experience combines individual and collaborative activities, conducted in and out of the classroom, structured following the Jigsaw Collaborative Learning Flow Pattern. A specific environment including portable technologies with network and computer applications has been developed to support and facilitate the orchestration of a flow of learning activities into a single integrated learning setting. The result is a Computer-Supported Collaborative Blended Learning scenario, which has been evaluated with first-year university students of the degrees of Software and Audiovisual Engineering within the subject Introduction to Information and Communications Technologies. The findings reveal that the scenario improves significantly students’ interest in their studies and their understanding about the campus and services provided. The environment is also an innovative approach to successfully support the heterogeneous activities conducted by both teachers and students during the scenario. This paper introduces the goals and context of the case study, describes how the technology was employed to conduct the learning scenario, the evaluation methods and the main results of the experience.
Resumo:
This paper presents the platform developed in the PANACEA project, a distributed factory that automates the stages involved in the acquisition, production, updating and maintenance of Language Resources required by Machine Translation and other Language Technologies. We adopt a set of tools that have been successfully used in the Bioinformatics field, they are adapted to the needs of our field and used to deploy web services, which can be combined to build more complex processing chains (workflows). This paper describes the platform and its different components (web services, registry, workflows, social network and interoperability). We demonstrate the scalability of the platform by carrying out a set of massive data experiments. Finally, a validation of the platform across a set of required criteria proves its usability for different types of users (non-technical users and providers).
Resumo:
This paper deals with the problem of spatial data mapping. A new method based on wavelet interpolation and geostatistical prediction (kriging) is proposed. The method - wavelet analysis residual kriging (WARK) - is developed in order to assess the problems rising for highly variable data in presence of spatial trends. In these cases stationary prediction models have very limited application. Wavelet analysis is used to model large-scale structures and kriging of the remaining residuals focuses on small-scale peculiarities. WARK is able to model spatial pattern which features multiscale structure. In the present work WARK is applied to the rainfall data and the results of validation are compared with the ones obtained from neural network residual kriging (NNRK). NNRK is also a residual-based method, which uses artificial neural network to model large-scale non-linear trends. The comparison of the results demonstrates the high quality performance of WARK in predicting hot spots, reproducing global statistical characteristics of the distribution and spatial correlation structure.
Resumo:
Sobriety checkpoints are not usually randomly located by traffic authorities. As such, information provided by non-random alcohol tests cannot be used to infer the characteristics of the general driving population. In this paper a case study is presented in which the prevalence of alcohol-impaired driving is estimated for the general population of drivers. A stratified probabilistic sample was designed to represent vehicles circulating in non-urban areas of Catalonia (Spain), a region characterized by its complex transportation network and dense traffic around the metropolis of Barcelona. Random breath alcohol concentration tests were performed during spring 2012 on 7,596 drivers. The estimated prevalence of alcohol-impaired drivers was 1.29%, which is roughly a third of the rate obtained in non-random tests. Higher rates were found on weekends (1.90% on Saturdays, 4.29% on Sundays) and especially at night. The rate is higher for men (1.45%) than for women (0.64%) and the percentage of positive outcomes shows an increasing pattern with age. In vehicles with two occupants, the proportion of alcohol-impaired drivers is estimated at 2.62%, but when the driver was alone the rate drops to 0.84%, which might reflect the socialization of drinking habits. The results are compared with outcomes in previous surveys, showing a decreasing trend in the prevalence of alcohol-impaired drivers over time.
Resumo:
Multisensory experiences influence subsequent memory performance and brain responses. Studies have thus far concentrated on semantically congruent pairings, leaving unresolved the influence of stimulus pairing and memory sub-types. Here, we paired images with unique, meaningless sounds during a continuous recognition task to determine if purely episodic, single-trial multisensory experiences can incidentally impact subsequent visual object discrimination. Psychophysics and electrical neuroimaging analyses of visual evoked potentials (VEPs) compared responses to repeated images either paired or not with a meaningless sound during initial encounters. Recognition accuracy was significantly impaired for images initially presented as multisensory pairs and could not be explained in terms of differential attention or transfer of effects from encoding to retrieval. VEP modulations occurred at 100-130ms and 270-310ms and stemmed from topographic differences indicative of network configuration changes within the brain. Distributed source estimations localized the earlier effect to regions of the right posterior temporal gyrus (STG) and the later effect to regions of the middle temporal gyrus (MTG). Responses in these regions were stronger for images previously encountered as multisensory pairs. Only the later effect correlated with performance such that greater MTG activity in response to repeated visual stimuli was linked with greater performance decrements. The present findings suggest that brain networks involved in this discrimination may critically depend on whether multisensory events facilitate or impair later visual memory performance. More generally, the data support models whereby effects of multisensory interactions persist to incidentally affect subsequent behavior as well as visual processing during its initial stages.
Resumo:
Exploratory and descriptive study based on quantitative and qualitative methods that analyze the phenomenon of violence against adolescents based on gender and generational categories. The data source was reports of violence from the Curitiba Protection Network from 2010 to 2012 and semi-structured interviews with 16 sheltered adolescents. Quantitative data were analyzed using SPSS software version 20.0 and the qualitative data were subjected to content analysis. The adolescents were victims of violence in the household and outside of the family environment, as victims or viewers of violence. The violence was experienced at home, mostly toward girls, with marked overtones of gender violence. More than indicating the magnitude of the issue, this study can give information to help qualify the assistance given to victimized people and address how to face this issue.
Resumo:
In this paper we analyse the decline of the Swiss corporate network between 1980 and 2000. We address the theoretical and methodological challenge of this transformation by the use of a combination of network analysis and multiple correspondence analysis (MCA). Based on a sample of top managers of the 110 largest Swiss companies in 1980 and 2000 we show that, beyond an adjustment to structural pressure, an explanation of the decline of the network has to include the strategies of the fractions of the business elites. We reveal that three factors contribute crucially to the decline of the Swiss corporate network: the managerialization of industrial leaders, the marginalization of law degree holders and the influx of hardly connected foreign managers.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
Background Folate deficiency leads to DNA damage and inadequate repair, caused by a decreased synthesis of thymidylate and purines. We analyzed the relationship between dietary folate intake and the risk of several cancers. Patients and methods The study is based on a network of case-control studies conducted in Italy and Switzerland in 1991-2009. The odds ratios (ORs) for dietary folate intake were estimated by multiple logistic regression models, adjusted for major identified confounding factors. Results For a few cancer sites, we found a significant inverse relation, with ORs for an increment of 100 μg/day of dietary folate of 0.65 for oropharyngeal (1467 cases), 0.58 for esophageal (505 cases), 0.83 for colorectal (2390 cases), 0.72 for pancreatic (326 cases), 0.67 for laryngeal (851 cases) and 0.87 for breast (3034 cases) cancers. The risk estimates were below unity, although not significantly, for cancers of the endometrium (OR = 0.87, 454 cases), ovary (OR = 0.86, 1031 cases), prostate (OR = 0.91, 1468 cases) and kidney (OR = 0.88, 767 cases), and was 1.00 for stomach cancer (230 cases). No material heterogeneity was found in strata of sex, age, smoking and alcohol drinking. Conclusions Our data support a real inverse association of dietary folate intake with the risk of several common cancers.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing from an offerset, have recently become popular in assortment optimization and revenue management. The dynamicprogram for these models is intractable and approximated by a deterministic linear program called theCDLP which has an exponential number of columns. When there are products that are being consideredfor purchase by more than one customer segment, CDLP is difficult to solve since column generationis known to be NP-hard. However, recent research indicates that a formulation based on segments withcuts imposing consistency (SDCP+) is tractable and approximates the CDLP value very closely. In thispaper we investigate the structure of the consideration sets that make the two formulations exactly equal.We show that if the segment consideration sets follow a tree structure, CDLP = SDCP+. We give acounterexample to show that cycles can induce a gap between the CDLP and the SDCP+ relaxation.We derive two classes of valid inequalities called flow and synchronization inequalities to further improve(SDCP+), based on cycles in the consideration set structure. We give a numeric study showing theperformance of these cycle-based cuts.
Resumo:
Recently, kernel-based Machine Learning methods have gained great popularity in many data analysis and data mining fields: pattern recognition, biocomputing, speech and vision, engineering, remote sensing etc. The paper describes the use of kernel methods to approach the processing of large datasets from environmental monitoring networks. Several typical problems of the environmental sciences and their solutions provided by kernel-based methods are considered: classification of categorical data (soil type classification), mapping of environmental and pollution continuous information (pollution of soil by radionuclides), mapping with auxiliary information (climatic data from Aral Sea region). The promising developments, such as automatic emergency hot spot detection and monitoring network optimization are discussed as well.
Resumo:
Iowa Department of Transportation Fiscal Year 2007 Report of Savings by Using Video Conferencing Through Iowa Communications Network to the Iowa General Assembly Pursuant to Chapter II 84 Acts and Joint Resolutions Enacted at the 1994 Regular Session of the 75th General Assembly of the State of Iowa Code section 8D.10 Report of Savings by State Agencies Iowa Code section 8D.10 requires certain state agencies prepare an annual report to the General Assembly certifying the identified savings associated with that state agency’s use of the Iowa Communications Network (ICN). This report covers estimated cost savings related to video conferencing via ICN for the Iowa Department of Transportation (DOT). In FY 2007, the DOT conducted two sessions utilizing ICN’s video conferencing system. These two sessions included DOT employees in Ames with non-DOT participants at remote ICN sites. Since the cost savings is calculated based on DOT staff savings, no cost savings from these conferences were gained because the public participants were attending from the ICN sites.