576 resultados para Neohelice granulata
Resumo:
The Lena Delta in Northern Siberia is one of the largest river deltas in the world. During peak discharge, after the ice melt in spring, it delivers between 60-8000 m**3/s of water and sediment into the Arctic Ocean. The Lena Delta and the Laptev Sea coast also constitute a continuous permafrost region. Ongoing climate change, which is particularly pronounced in the Arctic, is leading to increased rates of permafrost thaw. This has already profoundly altered the discharge rates of the Lena River. But the chemistry of the river waters which are discharged into the coastal Laptev Sea have also been hypothesized to undergo considerable compositional changes, e.g. by increasing concentrations of inorganic nutrients such as dissolved organic carbon (DOC) and methane. These physical and chemical changes will also affect the composition of the phytoplankton communities. However, before potential consequences of climate change for coastal arctic phytoplankton communities can be judged, the inherent status of the diversity and food web interactions within the delta have to be established. In 2010, as part of the AWI Lena Delta programme, the phyto- and microzooplankton community in three river channels of the delta (Trofimov, Bykov and Olenek) as well as four coastal transects were investigated to capture the typical river phytoplankton communities and the transitional zone of brackish/marine conditions. Most CTD profiles from 23 coastal stations showed very strong stratification. The only exception to this was a small, shallow and mixed area running from the outflow of Bykov channel in a northerly direction parallel to the shore. Of the five stations in this area, three had a salinity of close to zero. Two further stations had salinities of around 2 and 5 throughout the water column. In the remaining transects, on the other hand, salinities varied between 5 and 30 with depth. Phytoplankton counts from the outflow from the Lena were dominated by diatoms (Aulacoseira species) cyanobacteria (Aphanizomenon, Pseudanabaena) and chlorophytes. In contrast, in the stratified stations the plankton was mostly dominated by dinoflagellates, ciliates and nanoflagellates, with only an insignificant diatom component from the genera Chaetoceros and Thalassiosira (brackish as opposed to freshwater species). Ciliate abundance was significantly coupled with the abundance of total flagellates. A pronounced partitioning in the phytoplankton community was also discernible with depth, with a different community composition and abundance above and below the thermocline in the stratified sites. This work is a first analysis of the phytoplankton community structure in the region where Lena River discharge enters the Laptev Sea.
Resumo:
Two hundred and seventy five mollusc species from the continental shelf off Southern Spanish Sahara (depth: 32-60 m) were identified. Their distribution pattern is strongly influenced by the nature of the bottom (firm substrate, shelter, stability of sediment) rather than other factors at that depth interval. This faunal assemblage shows great affinity to the Mediterranean and Lusitanian faunas, and comprises only few (22 %) exclusively Senegalese and species living south of Senegal.
Resumo:
A multi-proxy palaeoecological investigation including pollen, plant macrofossil, radiocarbon and sedimentological analyses, was performed on a small mountain lake in the Eastern Pyrenees. This has allowed the reconstruction of: (1) the vegetation history of the area based on five pollen diagrams and eight AMS14C dates and (2) the past lake-level changes, based on plant macrofossil, lithological and pollen analysis of two stratigraphical transects correlated by pollen analysis. The palaeolake may have appeared before the Younger Dryas; the lake-level was low and the vegetation dominated by cold steppic grasslands. The lake-level rose to its highest level during the Holocene in the Middle Atlantic (at ca. 5060±45 b.p.). Postglacial forests (Quercetum mixtum and Abieto-Fagetum) developed progressively in the lower part of the valley, while dense Pinus uncinata forests rapidly invaded the surroundings of the mire and remained the dominant local vegetation until present. The observed lowering of the lake levels during the Late Atlantic and the Subboreal (from 5060 ± B.P. to 3590±40 b.p.) was related to the overgrowth of the mire. The first obvious indications of anthropogenic disturbances of the vegetation are recorded at the Atlantic/Subboreal boundary as a reduction in the forest component, which has accelerated during the last two millennia.
Resumo:
A total of 21 calcareous nannofossil datums was found in the upper Pliocene and Quaternary sediments recovered from the ocean floor of the North Atlantic during DSDP Leg 94. These datums were correlated to magnetostratigraphy, and ages were estimated by interpolation between magnetic reversals. Calcareous nannofossil assemblages from 549 samples recovered during ODP Leg 117 were studied in order to estimate the age of the sediments of Sites 720, 721, 722, and 731 drilled at the Indus Fan and the Owen Ridge in the Arabian Sea, Indian Ocean. We also showed that the datums above mentioned can be traced into the Indian Ocean. Two new species, namely Helicosphaera omanica and Reticulofenestra ampla, are described.
Resumo:
A total of 53 calcareous nannofossil datums were detected in Quaternary and Neogene sections recovered during Ocean Drilling Program Leg 165 in the Caribbean Sea. Most of the low-latitude nannofossil zonal markers of Okada and Bukry could be determined at all of the sites. Additionally, size distribution patterns of specimens of Reticulofenestra, a common genus in Neogene and Quaternary sediments, were examined to interpret the biostratigraphic utility of changes in size.
Resumo:
DSDP North Atlantic Site 608 yielded an excellent Miocene pelagic section which affords a further opportunity for elucidating the chronology of the calcareous nannofossil succession in the framework of magnetostratigraphic control. Most of the conventional (zonal) markers have been documented for this site and some of the earlier results are confirmed and refined. In addition several unconventional and less known markers have been added. The first two are the highest (last) occurrence of Sphenolithus delphix and Sphenolithus capricornutus at 23.6 Ma, which is immediately above the Oligocene-Miocene boundary as identified by the last occurrence of Reticulofenestra bisecta at 23.7 Ma. The next unconventional datum is the highest (last) occurrence of Ilselithina fusa at 22.8 Ma, which is also the highest (last) occurrence of Helicosphaera recta. Calcidiscus tropicus' lowest (first) occurrence is at 19.5 Ma, which is also the lowest occurrence of Sphenolithus belemnos, and Calcidiscus leptoporus' lowest (first) occurrence coincides with that of Sphenolithus heteromorphus at 18.5 Ma. Sphenolithus dissimilis' highest (last) occurrence is at 18.2 Ma and the Calcidiscus premacintyrei lowest (first) and highest (last) occurrences are, respectively, at 17.7 and 11.7 Ma. Discoaster braarudii occurs from 11.6 to 11.3 Ma and its highest (last) occurrence corresponds to that of Cyclicargolithus floridanus. Minylitha convallis occurs from 9.0 to 6.9 Ma. Within the range of Minylitha, at 8.0 Ma, a major shift occurs in reticulofenestrid placoliths from dominantly large (Reticulofenestra pseudoumbilicus) and medium size (Reticulofenestra minutula) species below to significant numbers of very small species (Dictyococcites productus and Gephyrocapsa) above. This is interpreted to be a major, though perhaps seasonal, change of productivity of the North Atlantic at Site 608. A new genus and species Cryptococcolithus takayamae, is described and a variety, Reticulofenestra pseudoumbilicus var. amplus is identified.
Resumo:
In order to map the modern distribution of diatoms and to establish a reliable reference data set for paleoenvironmental reconstruction in the northern North Pacific, a new data set including the relative abundance of diatom species preserved in a total of 422 surface sediments was generated, which covers a broad range of environmental variables characteristic of the subarctic North Pacific, the Sea of Okhotsk and the Bering Sea between 30° and 70°N. The biogeographic distribution patterns as well as the preferences in sea surface temperature of 38 diatom species and species groups are documented. A Q-mode factor analysis yields a three-factor model representing assemblages associated with the Arctic, Subarctic and Subtropical water mass, indicating a close relationship between the diatom composition and the sea surface temperatures. The relative abundance pattern of 38 diatom species and species groups was statistically compared with nine environmental variables, i.e. the summer sea surface temperature and salinity, annual surface nutrient concentration (nitrate, phosphate, silicate), summer and winter mixed layer depth and summer and winter sea ice concentrations. Canonical Correspondence Analysis (CCA) indicates 32 species and species groups have strong correspondence with the pattern of summer sea surface temperature. In addition, the total diatom flux data compiled from ten sediment traps reveal that the seasonal signals preserved in the surface sediments are mostly from spring through autumn. This close relationship between diatom composition and the summer sea surface temperature will be useful in deriving a transfer function in the subarctic North Pacific for the quantitative paleoceanographic and paleoenvironmental studies. The relative abundance of the sea-ice indicator diatoms Fragilariopsis cylindrus and F. oceanica of >20% in the diatom composition is used to represent the winter sea ice edge in the Bering Sea. The northern boundary of the distribution of F. doliolus in the open ocean is suggested to be an indicator of the Subarctic Front, while the abundance of Chaetoceros resting spores may indicate iron input from nearby continents and shelves and induced productivity events in the study area.
Resumo:
The effects of eutrophication on short term changes in the microbial community were investigated using high resolution lipid biomarker and trace metal data for sediments from the eutrophic Lake Rotsee (Switzerland). The lake has been strongly influenced by sewage input since the 1850s and is an ideal site for studying an anthropogenically altered ecosystem. Historical remediation measures have had direct implications for productivity and microbial biota, leading to community composition changes and abundance shifts. The higher sewage and nutrient input resulted in a productivity increase, which led predominantly to a radiation in diatoms, primary producers and methanogens between about 1918 and 1921, but also affected all microorganism groups and macrophytes between about 1958 and 1972. Bacterial biomass increased in 1933, which may have been related to the construction of a mechanical sewage treatment plant. Biomarkers also allowed tracing of fossil organic matter/biodegraded oil contamination in the lake. Stephanodiscus parvus, Cyclotella radiosa and Asterionella formosa were the dominant sources of specific diatom biomarkers. Since the 1850s, the cell density of methanogenic Archaea (Methanosaeta spp.) ranged within ca. 0.5-1.8 x 10**9 cells/g dry sediment and the average lipid content of Rotsee Archaea was ca. 2.2 fg iGDGTs/cell. An altered BIT index (BITCH), indicating changes in terrestrial organic matter supply to the lake, is proposed.
Resumo:
Within the scope of Russian-German palaeoenvironmental research, Two-Yurts Lake (TYL, Dvuh-Yurtochnoe in Russian) was chosen as the main scientific target area to decipher Holocene climate variability on Kamchatka. The 5x2 km large and 26 m deep lake is of proglacial origin and situated on the eastern flank of Sredinny Ridge at the northwestern end of the Central Kamchatka Valley, outside the direct influence of active volcanism. Here, we present results of a multi-proxy study on sediment cores, spanning about the last 7000 years. The general tenor of the TYL record is an increase in continentality and winter snow cover in conjunction with a decrease in temperature, humidity, and biological productivity after 5000-4500 cal yrs BP, inferred from pollen and diatom data and the isotopic composition of organic carbon. The TYL proxy data also show that the late Holocene was punctuated by two colder spells, roughly between 4500 and 3500 cal yrs BP and between 1000 and 200 cal yrs BP, as local expressions of the Neoglacial and Little Ice Age, respectively. These environmental changes can be regarded as direct and indirect responses to climate change, as also demonstrated by other records in the regional terrestrial and marine realm. Long-term climate deterioration was driven by decreasing insolation, while the short-term climate excursions are best explained by local climatic processes. The latter affect the configuration of atmospheric pressure systems that control the sources as well as the temperature and moisture of air masses reaching Kamchatka.