921 resultados para Native Fruits
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article updates the Brazilian database on food carotenoids. Emphasis is on carotenoids that have been demonstrated important to human health: alpha-carotene, beta-carotene, beta-cryptoxanthin, lycopene, lutein and zeaxanthin. The sampling and sample preparation strategies and the analytical methodology are presented. Possible sources of analytical errors, as well as the measures taken to avoid them, are discussed. Compositional variation due to such factors as variety/cultivar, stage of maturity, part of the plant utilized, climate or season and production technique are demonstrated. The effects of post-harvest handling, preparation, processing and storage of food on the carotenoid composition are also discussed. The importance of biodiversity is manifested by the variety of carotenoid sources and the higher levels of carotenoids in native, uncultivated or semi-cultivated fruits and vegetables in comparison to commercially produced crops. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 angstrom resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl1- instead of SO42-.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present work reports the characterization of Fastuosain, a novel cysteine protease of 25kDa, purified from the unripe fruits of Bromelia fastuosa, a wild South American Bromeliaceae. Proteolytic activity, measured using casein and synthetic substrates, was dependent on the presence of thiol reagents, having maximum activity at pH 7.0. The present work reports cDNA cloning of Fastuosain; cDNA was amplified by PCR using specific primers. The product was 1096pb long. Mature fastuosain has 217 residues, and with the proregion has a total length of 324 residues. Its primary sequence showed high homology with ananain(74%), stem bromelain (66%) and papain (44%).
Resumo:
R. dichotoma (Lam.) DC. é um arbusto que ocorre na região central do Brasil em ambientes úmidos, brejosos, formando nestes locais grandes populações. O período de floração desta espécie é longo de 6-8 meses. Neste estudo realizado no município de Tanabi (São Paulo), o pico de floração ocorreu no mês de abril. Semelhante ao observado em outras Melastomataceae de anteras tubulares e deiscência poricida, R. dichotoma é polinizada por abelhas vibradoras. Este estudo constatou que esta espécie é autocompatível com 59% de sucesso obtido nas autopolinizações manuais (n=90) e não foi observada a presença de agamospernmia (n=85). A polinização cruzada (xenogamia) foi predominante, sendo que 66% das flores polinizadas desenvolveram frutos (n=92). Surpreendentemente, apesar desta espécie apresentar anteras poricidas constatou-se a ocorrência de autopolinização espontânea em 33% das flores (n=92).
Resumo:
Before 1989 all braconid wasps were thought to be parasitoids, but in that year the first phytophagous species was reported. Subsequently, a few other examples of phytophagy have been discovered, most of which are species of Allorhogas in the subfamily Doryctinae. Until now, all demonstrated examples of phytophagy in this genus have been as gall inducers in the fruits of Fabaceae. Here we describe a new species from Costa Rica, Allorhogas conostegia Marsh and Shaw, and provide evidence that it forms galls in the fruits of Conostegia xalapensis (Melastomataceae). We also provide information on the phenology of the plant and of the galls and the effects of the galls on the host plant, and we discuss the potential species richness of Allorhogas in the Neotropics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Origin and importance. Acerola, or Malpighia emarginata D. C., is native to the Caribbean islands, Central America and the Amazonian region. More recently, it has been introduced in subtropical areas (Asia, India and South America). The vitamin C produced by acerola is better absorbed by the human organism than synthetic ascorbic acid. Exportation of acerola crops is a potential alternative source of income in agricultural businesses. In Brazil, the commercial farming of acerola is quite recent. Climatic conditions. Acerola is a rustic plant. It can resist temperatures close to 0 degrees C, but it is well adapted to temperatures around 26 degrees C with rainfall between (1200 and 1600) mm per year. Fruit characteristics. Acerola fruit is drupaceous, whose form can vary from round to conic. When ripe, it can be red, purple or yellow. The fruit weight varies between (3 and 16) g. Maturation. Acerola fruit presents fast metabolic activity and its maturation occurs rapidly. When commercialised in ambient conditions, it requires fast transportation or the use of refrigerated containers to retard its respiration and metabolism partially. Production and productivity. Flowering and fruiting are typically in cycles associated with rain. Usually, they take place in 25-day cycles, up to 8 times per year. The plant can be propagated by cuttings, grafting or seedlings. Harvest. Fruits produced for markets needs to be harvested at its optimal maturation stage. For distant markets, they need to be packed in boxes and piled up in low layers; transportation should be done in refrigerated trucks in relatively high humid conditions. Biochemical constituents. Acerola is the most important natural source of vitamin C [(1000 to 4500) mg.100(-1) g of pulp], but it is also rich in pectin and pectolytic enzymes, carotenoids, plant fibre, vitamin B, thiamin, riboflavin, niacin, proteins and mineral salts. It has also shown active anti-fungal properties. Products and market. Acerola is used in the production of juice, soft drinks, gums and liqueurs. The USA and Europe are great potential markets. In Europe, acerola extracts are used to enrich pear or apple juices. In the USA, they are used in the pharmaceutical industry. Conclusions. The demand for acerola has increased significantly in recent years because of the relevance of vitamin C in human health, coupled with the use of ascorbic acid as an antioxidant in food and feed. Acerola fruit contains other significant components, which are likely to lead to a further increase in its production and trade all over the world.
Resumo:
Testes em placas de CCDC reveladas com solução de beta-caroteno mostraram a presença de duas substâncias com propriedades antioxidantes no extrato hexânico. Elas foram isoladas e identificadas como 3-metil-sargacromenol (1) and sargacromenol (2). O extrato hexânico forneceu ainda o ácido 3-metil-sargaquinóico (3) e o ácido sargaquinóico (4). O comportamento eletroquímico destas substâncias foi investigado em CH2Cl2/Bu4NBF4 sobre eletrodo de carbono vítreo. A oxidação do grupo fenólico nos tocotrienóis 1 and 2 é responsável por um pico anódico em potenciais de +0.23V e +0.32V, os quais são correlacionados com sua atividade antioxidante. O mecanismo de oxidação é comparado com o comportamento eletroquímico do antioxidante alfa-tocopherol.