959 resultados para NMR structure
Resumo:
1. The spatial and temporal distribution of eggs laid by herbivorous insects is a crucial component of herbivore population stability, as it influences overall mortality within the population. Thus an ecologist studying populations of an endangered butterfly can do little to increase its numbers through habitat management without knowledge of its egg-laying patterns across individual host-plants under different habitat management regimes. At the other end of the spectrum, a knowledge of egg-laying behaviour can do much to control pest outbreaks by disrupting egg distributions that lead to rapid population growth. 2. The distribution of egg batches of the processionary caterpillar Ochrogaster lunifer on acacia trees was monitored in 21 habitats during 2 years in coastal Australia. The presence of egg batches on acacias was affected by host-tree 'quality' (tree size and foliar chemistry that led to increased caterpillar survival) and host-tree 'apparency' (the amount of vegetation surrounding host-trees). 3. In open homogeneous habitats, more egg batches were laid on high-quality trees, increasing potential population growth. In diverse mixed-species habitats, more egg batches were laid on low-quality highly apparent trees, reducing population growth and so reducing the potential for unstable population dynamics. The aggregation of batches on small apparent trees in diverse habitats led to outbreaks on these trees year after year, even when population levels were low, while site-wide outbreaks were rare. 4. These results predict that diverse habitats with mixed plant species should increase insect aggregation and increase population stability. In contrast, in open disturbed habitats or in regular plantations, where egg batches are more evenly distributed across high-quality hosts, populations should be more unstable, with site-wide outbreaks and extinctions being more common. 5. Mixed planting should be used on habitat regeneration sites to increase the population stability of immigrating or reintroduced insect species. Mixed planting also increases the diversity of resources, leading to higher herbivore species richness. With regard to the conservation of single species, different practices of habitat management will need to be employed depending on whether a project is concerned with methods of rapidly increasing the abundance of an endangered insect or concerned with the maintenance of a stable, established insect population that is perhaps endemic to an area. Suggestions for habitat management in these different cases are discussed. 6. Finally, intercropping can be highly effective in reducing pest outbreaks, although the economic gains of reduced pest attack may be outweighed by reduced crop yields in mixed-crop systems.
Resumo:
A method is presented for including path propagation effects into models of radiofrequency resonators for use in magnetic resonance imaging. The method is based on the use of Helmholtz retarded potentials and extends our previous work on current density models of resonators based on novel inverse finite Hilbert transform solutions to the requisite integral equations. Radiofrequency phase retardation effects are most pronounced at high field strengths (frequencies) as are static field perturbations due to the magnetic materials in the resonators themselves. Both of these effects are investigated and a novel resonator structure presented for use in magnetic resonance microscopy.
Resumo:
Inhibitors of proteolytic enzymes (proteases) are emerging as prospective treatments for diseases such as AIDS and viral infections, cancers, inflammatory disorders, and Alzheimer's disease. Generic approaches to the design of protease inhibitors are limited by the unpredictability of interactions between, and structural changes to, inhibitor and protease during binding. A computer analysis of superimposed crystal structures for 266 small molecule inhibitors bound to 48 proteases (16 aspartic, 17 serine, 8 cysteine, and 7 metallo) provides the first conclusive proof that inhibitors, including substrate analogues, commonly bind in an extended beta-strand conformation at the active sites of all these proteases. Representative superimposed structures are shown for (a) multiple inhibitors bound to a protease of each class, (b) single inhibitors each bound to multiple proteases, and (c) conformationally constrained inhibitors bound to proteases. Thus inhibitor/substrate conformation, rather than sequence/composition alone, influences protease recognition, and this has profound implications for inhibitor design. This conclusion is supported by NMR, CD, and binding studies for HIV-1 protease inhibitors/ substrates which, when preorganized in an extended conformation, have significantly higher protease affinity. Recognition is dependent upon conformational equilibria since helical and turn peptide conformations are not processed by proteases. Conformational selection explains the resistance of folded/structured regions of proteins to proteolytic degradation, the susceptibility of denatured proteins to processing, and the higher affinity of conformationally constrained 'extended' inhibitors/substrates for proteases. Other approaches to extended inhibitor conformations should similarly lead to high-affinity binding to a protease.
Resumo:
The reproductive system of many female Therevidae has a sac-like structure associated with the spermathecae. This structure, termed the spermathecal sac, has not been recorded previously from any other Diptera and appears unique to certain members of the Therevidae. There is enormous variety in spermathecal sac size and shape, with greatest development in the Australasian Therevidae. A histological examination of the reproductive system of two;Australian therevids, Agapophytus albobasalis Mann and Ectinorhynchus variabilis (Macquart) (Diptera: Asiloidea), reveals that the spermathecal sacs are cuticle-lined and that the intima is frequently highly folded. In some mated individuals, sperm was found within the spermathecal sac, suggesting that sperm and perhaps male accessory gland material is deposited there during copulation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the p-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.
Resumo:
Retrovirus entry into cells follows receptor binding by the surface exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Resumo:
In this paper necessary and sufficient conditions for a vector to be the fine structure of a balanced ternary design with block size 3, index 3 and rho(2) = 1 and 2 are determined with one unresolved case.
Resumo:
A series of peptides corresponding to isolated regions of Tau (tau) protein have been synthesized and their conformations determined by H-1 NMR spectroscopy. Immunodominant peptides corresponding to tau(224-240) and a bisphosphorylated derivative in which a single Thr and a single Ser are phosphorylated at positions 231 and 235 respectively, and which are recognized by an Alzheimer's disease-specific monoclonal antibody, were the main focus of the study. The nonphosphorylated peptide adopts essentially a random coil conformation in aqueous solution, but becomes slightly more ordered into P-type structure as the hydrophobicity of the solvent is increased by adding up to 50% trifluoroethanol (TFE). Similar trends are observed for the bisphosphorylated peptide, with a somewhat stronger tendency to form an extended structure, There is tentative NMR evidence for a small population of species containing a turn at residues 229-231 in the phosphorylated peptide, and this is strongly supported by CD spectroscopy. A proposal that the selection of a bioactive conformation from a disordered solution ensemble may be an important step (in either tubulin binding or in the formation of PHF) is supported by kinetic data on Pro isomerization. A recent study showed that Thr231 phosphorylation affected the rate of prolyl isomerization and abolished tubulin binding. This binding was restored by the action of the prolyl isomerase Pin1. In the current study, we find evidence for the existence of both trans and cis forms of tau peptides in solution but no difference in the equilibrium distribution of cis-trans isomers upon phosphorylation. Increasing hydrophobicity decreases the prevalence of cis forms and increases the major trans conformation of each of the prolines present in these molecules. We also synthesized mutant peptides containing Tyr substitutions preceding the Pro residues and found that phosphorylation of Tyr appears to have an effect on the equilibrium ratio of cis-trans isomerization and decreases the cis content.
Resumo:
A magnesium-aluminium alloy of eutectic composition was solidified under two different cooling conditions, producing a low and a high growth rate of the eutectic solid-liquid interface. The high growth rate specimen contained smaller eutectic grains and cells, with a smaller interphase spacing compared with the low growth rate specimen. The high growth rate specimen also contained some primary Mg17Al12 dendrites, suggesting that the coupled zone is skewed towards the Mg phase with increased undercooling, A lamellar eutectic morphology was observed in the low growth rate specimen, while the morphology was fibrous in the high growth rate specimen.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
The fine structure of a directed triple system of index lambda is the vector (c(1), c(2),...,C-lambda), where c(i) is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index 3 for upsilon = 2 (mod 3).
Resumo:
Mesoporous Mobil catalytic materials of number 41 (MCM-41) silica was chemically modified using both inorganic and organic precursors and characterized using the techniques, XRD, XPS, MAS NMR, FTIR, W-Vis, and physical adsorption of nitrogen, hydrocarbons (hexane, benzene, acetone, and methanol) and water vapor. Modification using organic reagents was found to result in a significant loss in porosity and a shape change of surface properties (increased hydrophobicity and decreased acidity). With inorganic modifying reagents, the decrease in porosity was also observed while the surface properties were not significantly altered as reflected by the adsorption isotherms of organics and water vapors. Chemical modifications can greatly improve the hydrothermal stability of MCM-41 material because of the enhanced surface hydrophobicity (with organic modifiers) or increased pore wall thickness (with inorganic modifiers). (C) 2000 Elsevier Science B.V. All rights reserved.