955 resultados para NANOCLUSTER CATALYSTS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The applicability of the silylant agents of the general formula Y3Si-R-X, depends on the reactivity of Y group (halide or alcoxide) attached to silicon and the organic function X (halide, amine, thiol, cyanide, etc) in the extreme position of the chain. Both groups are linked together by an organic chain R, containing usually three methylene groups. A series of these agents can be covalently bonded to an inorganic matrix, since the available OH groups are distributed on the surface, making silica gel the most common support. However, other inorganic oxides, zeolites, lamellar inorganic phosphates and chrysotile can also have these agents anchored. Some illustration are presented for immobilized surface in the use as extractors of cations from dilute aqueous or non-aqueous solutions, catalysts agents, ionic exchanged materials, support for enzyme immobilization, chromatographic applications, use in some industrial features and in many other areas. The evolution of this exciting research field to produce new materials, for many tecnological applications, is strongly dependent on the development of a sensible systematic process for the synthesis of a series of new specific silylant agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We review herewith the use of solids such as activated alumina and other modern Lewis acid catalysts, as well as the influence of different solvents, including water, on the title reactions, described in the last seven years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of the research was to study the influence of temperature, oxygen pressure, catalysts loading and initial COD concentration of debarking wastewater on the pollutants during the catalytic oxidation. More importantly, how the addition of catalyst affects the wet oxidation process. The whole work was divided into two main sections, theoretical and experimental parts. The theoretical part reviews the pulp and paper industry from wood processing to paper production as well as operations that generate wastes. Treatment methods applicable for industrial pulp and paper mill effluents were also discussed. Wet oxidation and catalytic wet oxidation processes including mechanism, reactions, kinetics and industrial applications were previewed. In the experimental part, catalytic wet oxidation process were studied at 120-180°C, 0-10 bar oxygen pressure, 0-1 g/L catalyst concentration and 1000-3000 mg/L initial COD concentration. Responses, such as Chemical oxygen demand (COD), Total organic carbon (TOC), colour, lignin/tannin, Biochemical oxygen demand (BOD) and pH were measured. In the experiment, the best conditions occurred at 180°C, 10 bar, l g/L catalyst concentration and 3000mg/L initial COD. At these conditions; 74% COD, 97% lignin/tannin, 54% TOC, 90% colour were removed from the wastewater. pH was greatly reduced from 7 to 4.6. Lignin/tannin was removed most. Lignin/tannin showed linear dependency with colour during oxidation. Temperature made the most impact in reducing contaminants in debarked wastewater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the influence of elastic anisotropy on nanoscale precursor textures that exist in some shape-memory alloys and show that tweed occurs in the limit of high elastic anisotropy while a nanocluster phase-separated state occurs for values of anisotropy inhibiting the formation of martensite. These results are consistent with specific heat data, elastic constant measurements, and zero-field cooling or field cooling experiments in nonstoichiometric NiTi alloys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of the presence of hydrogen on Pt/TiO2 catalysts submitted to reduction treatment has been studied by FT-IR at room temperature. After submitting to LTR treatment, the hydrogen spillover has been detected and the presence of hydrogen at the bulk is shown to produce a strong absorption in the infrared spectral region. After HTR treatment, the hydrogen is strongly chemissorbed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Throughout history indigo was derived from various plants for example Dyer’s Woad (Isatis tinctoria L.) in Europe. In the 19th century were the synthetic dyes developed and nowadays indigo is mainly synthesized from by-products of fossil fuels. Indigo is a so-called vat dye, which means that it needs to be reduced to its water soluble leucoform before dyeing. Nowadays, most of the industrial reduction is performed chemically by sodium dithionite. However, this is considered environmentally unfavourable because of waste waters contaminating degradation products. Therefore there has been interest to find new possibilities to reduce indigo. Possible alternatives for the application of dithionite as the reducing agent are biologically induced reduction and electrochemical reduction. Glucose and other reducing sugars have recently been suggested as possible environmentally friendly alternatives as reducing agents for sulphur dyes and there have also been interest in using glucose to reduce indigo. In spite of the development of several types of processes, very little is known about the mechanism and kinetics associated with the reduction of indigo. This study aims at investigating the reduction and electrochemical analysis methods of indigo and give insight on the reduction mechanism of indigo. Anthraquinone as well as it’s derivative 1,8-dihydroxyanthraquinone were discovered to act as catalysts for the glucose induced reduction of indigo. Anthraquinone introduces a strong catalytic effect which is explained by invoking a molecular “wedge effect” during co-intercalation of Na+ and anthraquinone into the layered indigo crystal. The study includes also research on the extraction of plant-derived indigo from woad and the examination of the effect of this method to the yield and purity of indigo. The purity has been conventionally studied spectrophotometrically and a new hydrodynamic electrode system is introduced in this study. A vibrating probe is used in following electrochemically the leuco-indigo formation with glucose as a reducing agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In organic synthesis, lipases are the most frequently used biocatalysts. They are efficient stereoselective catalysts in the kinetic resolution of a wide variety of chiral compounds. The discovery that enzymes possess catalytic activity in organic solvents has made it possible to address the question of reaction medium influence on enzymatic specificity. Perhaps the most exciting and significant development in this emerging area is the discovery that enzyme specificity, in particular enantioselectivity, can be affected by changing from one organic solvent to another. This article discusses the scope and possible mechanistic models of this phenomenon in hydrolases, specially lipases, as well as directions of future research in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For two important metal oxides (MO, M=Mg, Zn) we predict, via accurate electronic structure calculations, that new low-density nanoporous crystalline phases may be accessible via the coalescence of nanocluster building blocks. Specifically, we consider the assembly of cagelike (MO)12 clusters exhibiting particularly high gas phase stability, leading to new polymorphs with energetic stabilities rivaling (and sometimes higher) than those of known MO polymorphs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work considers mainly the problem of environmental pollution due to the production of energy by burning fossil fuels, particularly in urban vehicles. Electrochemical energy conversion is proposed as a partial solution to this problem, through the use of hydrogen in fuel cells. In both the production of hydrogen by electrolysis and in the electrochemical processes in fuel cells, the key factor is electrocatalysis. The concept of electrocatalysis, the production of catalysts and supported catalysts and their use in practical systems for the conversion of energy is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since its discovery, phase transfer catalysis (PTC) has grown considerably and nowadays is one of the most versatile preparative methods. The search for new catalysts, their use in PTC asymmetric synthesis and the attempts to understand their mechanistic role are modern and exciting topics of investigation. A review on main achievements in the last two decades is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetic parameters for the CO oxidation reaction using copper/alumina-modified ceria as catalysts were determined. The catalysts with different concentrations of the metals were prepared using impregnation methods. In addition, the reduction-oxidation behaviour of the catalysts were investigated by temperature-programmed reduction. The activity results show that the mechanism for CO oxidation is bifunctional : oxygen is activated on the anionic vacancies of ceria surface, while carbon monoxide is adsorbed preferentially on the higher oxidation copper site. Therefore, the reaction occurs on the interfacial active centers. Temperatures-programmed Reduction patterns show a higher disperdion when cerium oxide is present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic combustion of methane on alumina supported palladium catalysts was studied. It has been reported that the activity of the catalyst increases with its time on line, despite of an increase of the palladium particle size. However, different preparation, pretreatment and testing conditions can be the reason for the observed different results. An experimental design, which allows to verify the influence of several parameters at the same time with a good statistical quality, was used. A Plackett-Burman design was selected for the screening of the variables which have an effect on the increase of the catalyst activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of zeolites and other molecular sieves as catalysts is discussed at an introductory level. The text includes a brief historic background on the use of zeolites in catalysis, and a discussion of some chemical and physical properties of silicalite, aluminosilicate, and aluminophosphate molecular sieves. The strategies currently used to chemically modify zeolites and related materials to produce catalysts with increased activity and selectivity are discussed, including the use of redox molecular sieves for hydrocarbon oxidation and the leaching of the active metals from the support.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Macroscopic samples of fullerene nanostructures are obtained in a modified arc furnace using the electric arc method with a Helium atmosphere at low pressures. High purity graphite rods are used as electrodes but, when drilled and the orifices filled with powders of transition metals (Fe, Co, Ni) acting as catalysts, the resulting particles are carbon nanostructures of the fullerene family, known as Single Wall Nanotubes (SWNTs). They have typical diameters of 1.4 nm, lengths up to tenths of microns and they are arranged together in bundles containing several SWNTs. Those samples are observed and analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work is to review the chemical and physical properties of layered molybdenum disulfide. The three polymorphic/polytypic modifications of the compound were found, the polytypes 2H (molybdenite) and 3R are semiconductors while the polymorph 1T is an electronic conductor. 2H-MoS2 has several important industrial applications as hydrotreatment catalysts, energy storage devices, solar cells, solid lubricants, among others. When intercalated, the 2H phase changes to a distorted 1T phase, producing unstable intercalation compounds that can be exfoliated in solution, producing single layers and consequently nanocomposites. The direct synthesis of the 1T phase produces stable intercalation compounds. Recently molybdenum disulfide was prepared as nanotubes and fulerene-like structures that bring new insights in the investigation of this important material.