997 resultados para Music, Influence of.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies on the diffusion of methane in a zeolite structure type LTA (as per IZA nomenclature) have indicated that different types of methane zeolite potentials exist in the literature in which methane is treated within the united-atom model. One set of potentials, referred to as model A, has a methane oxygen diameter of 3.14 angstrom, while another set of potential parameters, model B, employs a larger value of 3.46 angstrom. Fritzsche and co-workers (1993) have shown that these two potentials lead to two distinctly different energetic barriers for the passage of methane through the eight-ring window in the cation-free form of zeolite A. Here, we compute the variation of the self-diffusivity (D) with loading (c) for these two types of potentials and show that this slight variation in the diameter changes the concentration dependence qualitatively: thus, D decreases monotonically with c for model A, while D increases and goes through a maximum before finally decreasing for model B. This effect and the surprising congruence of the diffusion coefficients for both models at high loadings is examined in detail at the molecular level. Simulations for different temperatures reveal the Arrhenius behaviour of the self-diffusion coefficient. The apparent activation energy is found to vary with the loading. We conclude that beside the cage-to-cage jumps, which are essential for the migration of the guest molecules, at high concentrations migration within the cage and guest guest interactions with other molecules become increasingly dominant influences on the diffusion coefficient and make the guest zeolite interaction less important for both model A and model B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Addition of boron to cast Ti-6Al-4V alloy leads to significant refinement in grain size, which in turn improves processibilty as well as the mechanical properties of the as-cast alloy. Room temperature tensile and fatigue properties of Wrought Ti-6Al-4V-B alloys with B up to 0.09 wt.% are investigated. Thermo-mechanical processing at 950 degrees C caused kinking of alpha lamellae and alignment of TiB particles in the flow direction with a negligible change in prior beta grain and colony sizes, indicating the absence of dynamic recrystallisation during forging. Characterisation with the aid of X-ray and electron back scattered diffraction reveal a strong basal texture in B free alloy which gets randomised with the 0.09B addition in the forged condition. Marginal enhancement in tensile and fatigue properties upon forging is noted. B free wrought Ti-6Al-4V alloy exhibits better tensile strength as compared to B containing alloy, due to the operation of < c+a > slip on pyramidal planes with high value of CRSS as compared to < a > slip on basal and prismatic planes. Decrease in fatigue strength of Ti-6Al-4V-0.04B in as-cast and the wrought state is observed due to increase in the volume fraction of grain boundary a phase with B addition, which acts as a crack nucleation site. No significant effect of TiB particles on tensile and fatigue properties is observed. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of Ni-49 at.% Ti were deposited by DC magnetron sputtering on silicon substrates at 300 degrees C. The as-deposited amorphous films were annealed at a vacuum of 10(-6) mbar at various temperatures between 300 and 650 degrees C to study the effect of annealing on microstructure and mechanical properties. The as-deposited films showed partial crystallization on annealing at 500 degrees C. At 500 degrees C, a distinct oxidation layer, rich in titanium but depleted in Ni, was seen on the film surface. A gradual increase in thickness and number of layers of various oxide stoichiometries as well as growth of triangular shaped reaction zones were seen with increase in annealing temperature up to 650 degrees C. Nanoindentation studies showed that the film hardness values increase with increase in annealing temperature up to 600 degrees C and subsequently decrease at 650 degrees C. The results were explained on the basis of the change in microstructure as a result of oxidation on annealing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated quadratic nonlinearity (beta(HRS)) and linear and circular depolarization ratios (D and D', respectively) of a series of 1:1 complexes of tropyliumtetrafluoroborate as a cation and methyl-substituted benzenes as pi-donors by making polarization resolved hyper-Rayleigh scattering measurements in solution. The measured D and D' values are much lower than the values expected from a typical sandwich or a T-shaped geometry of a complex. In the cation-pi complexes studied here, the D value varies from 1.36 to 1.46 and D' from 1.62 to 1.72 depending on the number of methyl substitutions on the benzene ring. In order to probe it further, beta, D and D' were computed using the Zerner intermediate neglect of differential overlap-correction vector self-consistent reaction field technique including single and double configuration interactions in the absence and presence of BF4- anion. In the absence of the anion, the calculated value of D varies from 4.20 to 4.60 and that of D' from 2.45 to 2.72 which disagree with experimental values. However, by arranging three cation-pi BF4- complexes in a trigonal symmetry, the computed values are brought to agreement with experiments. When such an arrangement was not considered, the calculated beta values were lower than the experimental values by more than a factor of two. This unprecedented influence of the otherwise ``unimportant'' anion in solution on the beta value and depolarization ratios of these cation-pi complexes is highlighted and emphasized in this paper. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4716020]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In steel refining process, an increase of interfacial area between the metal and slag through the metal droplets emulsified into the slag, so-called ``metal emulsion'', is one prevailing view for improving the reaction rate. The formation of metal emulsion was experimentally evaluated using Al-Cu alloy as metal phase and chloride salt as slag phase under the bottom bubbling condition. Samples were collected from the center of the salt phase in the container. Large number of metal droplets were separated from the salt by dissolving it into water. The number, surface area, and weight of the droplets increased with the gas flow rate and have local maximum values. The formation and sedimentation rates of metal droplets were estimated using a mathematical model. The formation rate increased with the gas flow rate and has a local maximum value as a function of gas flow rate, while the sedimentation rate is independent of the gas flow rate under the bottom bubbling condition. Three types of formation mode of metal emulsion, which occurred by the rupture of metal film around the bubble, were observed using high speed camera. During the process, an elongated column covered with metal film was observed with the increasing gas flow rate. This elongated column sometimes reached to the top surface of the salt phase. In this case, it is considered that fine droplets were not formed and in consequence, the weight of metal emulsion decreased at higher gas flow rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the current-voltage characteristics of carbon nanotube arrays and shown that the current through the arrays increases rapidly with applied voltage before the breakdown occurs. Simultaneous measurements of current and temperature at one end of the arrays suggest that the rapid increase of current is due to Joule heating. The current through the array and the threshold voltage are found to increase with decreasing pressure. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3702777]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermoacoustic engines convert heat energy into high amplitude sound waves, which is used to drive thermoacoustic refrigerator or pulse tube cryocoolers by replacing the mechanical pistons such as compressors. The increasing interest in thermoacoustic technology is of its potentiality of no exotic materials, low cost and high reliability compared to vapor compression refrigeration systems. The experimental setup has been built based on the linear thermoacoustic model and some simple design parameters. The engines produce acoustic energy at the temperature difference of 325-450 K imposed along the stack of the system. This work illustrates the influence of stack parameters such as plate thickness (PT) and plate spacing (PS) with resonator length on the performance of thermoacoustic engine, which are measured in terms of onset temperature difference, resonance frequency and pressure amplitude using air as a working fluid. The results obtained from the experiments are in good agreement with the theoretical results from DeltaEc. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin (Sn) doped zinc oxide (ZnO) thin films were synthesized by sol-gel spin coating method using zinc acetate di-hydrate and tin chloride di-hydrate as the precursor materials. The films were deposited on glass and silicon substrates and annealed at different temperatures in air ambient. The agglomeration of grains was observed by the addition of Sn in ZnO film with an average grain size of 60 nm. The optical properties of the films were studied using UV-VIS-NIR spectrophotometer. The optical band gap energies were estimated at different concentrations of Sn. The MOS capacitors were fabricated using Sn doped ZnO films. The capacitance-voltage (C-V), dissipation vs. voltage (D-V) and current-voltage (I-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated. The porosity and surface area of the films were increased with the doping of Sn which makes these films suitable for opto-electronic applications. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cis/trans isomer ratios of the Xaa-Pyr (Pyr = pyrrolidine) 3 degrees amide bonds are significantly high (similar to 90% cis) in the novel peptidomimetics where Pyr contains 1,3-oxazine (Oxa) or 1,3-thiazine (Thi) at its 2 position. We find that an unusual n -> pi(i-1)* interaction, selectively stabilizes the cis conformer and the n X n repulsion destabilizes the trans conformer of these molecules. Both these electronic effects oppose the steric effects in the 3 degrees amide bond. The structural requirements for manifestation of these electronic effects are determined. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed investigation of the erects of piezoelectricity, spontaneous polarization and charge density on the electronic states and the quasi-Fermi level energy in wurtzite-type semiconductor heterojunctions. This has required a full solution to the coupled Schrodinger-Poisson-Navier model, as a generalization of earlier work on the Schrodinger-Poisson problem. Finite-element-based simulations have been performed on a A1N/GaN quantum well by using both one-step calculation as well as the self-consistent iterative scheme. Results have been provided for field distributions corresponding to cases with zero-displacement boundary conditions and also stress-free boundary conditions. It has been further demonstrated by using four case study examples that a complete self-consistent coupling of electromechanical fields is essential to accurately capture the electromechanical fields and electronic wavefunctions. We have demonstrated that electronic energies can change up to approximately 0.5 eV when comparing partial and complete coupling of electromechanical fields. Similarly, wavefunctions are significantly altered when following a self-consistent procedure as opposed to the partial-coupling case usually considered in literature. Hence, a complete self-consistent procedure is necessary when addressing problems requiring more accurate results on optoelectronic properties of low-dimensional nanostructures compared to those obtainable with conventional methodologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Density distribution, fluid structure and solvation forces for fluids confined in Janus slit-shaped pores are investigated using grand canonical Monte Carlo simulations. By varying the degree of asymmetry between the two smooth surfaces that make up the slit pores, a wide variety of adsorption situations are observed. The presence of one moderately attractive surface in the asymmetric pore is sufficient to disrupt the formation of frozen phases observed in the symmetric case. In the extreme case of asymmetry in which one wall is repulsive, the pore fluid can consist of a frozen contact layer at the attractive surface for smaller surface separations (H) or a frozen contact layer with liquid-like and gas-like regions as the pore width is increased. The superposition approximation, wherein the solvation pressure and number density in the asymmetric pores can be obtained from the results on symmetric pores, is found to be accurate for H > 4 sigma(ff), where sigma(ff) is the Lennard-Jones fluid diameter and within 10% accuracy for smaller surface separations. Our study has implications in controlling stick slip and overcoming static friction `stiction' in micro and nanofluidic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive study on the structural, electrical and optical properties of InN thin films grown on c-Al2O3, GaN(130 nm)/Al2O3, GaN(200 nm)/Al2O3 and GaN(4 mu m)/Al2O3 by using plasma-assisted molecular beam epitaxy. The high resolution X-ray diffraction study reveals better crystalline quality for the film grown on GaN(4 mu m)/Al2O3 as compared to others. The electronic and optical properties seem to be greatly influenced by the structural quality of the films, as can be evidenced from Hall measurement and optical absorption spectroscopy. Kane's k.p model was used to describe the dependence of optical absorption edge of InN films on carrier concentration by considering the non-parabolic dispersion relation for carrier in the conduction band. Room temperature Raman spectra for the InN films grown on GaN show the signature of residual tensile stress in contrast to the compressive stress observed for the films grown directly on c-Al2O3. (C) 2012 Elsevier B.V. All rights reserved.