957 resultados para Murdoch, Iris
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
The Bureau of Immunization is part of the Division of Acute Disease Prevention and Emergency Response (ADPER) at the Iowa Department of Public Health (IDPH). The ADPER division provides support, technical assistance and consultation to local hospitals, public health agencies, community health centers, emergency medical service programs and local health care providers regarding infectious diseases, disease prevention and control, injury prevention and public health and health care emergency preparedness and response. The division encompasses the Center for Acute Disease Epidemiology (CADE), the Bureau of Immunization and Tuberculosis (ITB), the Bureau of Emergency Medical Services (EMS), the Bureau of Communication and Planning (CAP), the Office of Health Information Technology (HIT), and the Center for Disaster Operations and Response (CDOR). The Bureau of Immunization and Tuberculosis includes the Immunization Program, the Tuberculosis Control Program, and the Refugee Health Program. The mission of the Immunization Program is to decrease vaccine‐preventable diseases through education, advocacy and partnership. While there has been major advancement in expanding immunizations to many parts of Iowa’s population, work must continue with public and private health care providers to promote the program’s vision of healthy Iowans living in communities free of vaccine‐preventable diseases. Accomplishing this goal will require achieving and maintaining high vaccination coverage levels, improving vaccination strategies among under‐vaccinated populations, prompt reporting and thorough investigation of suspected disease cases, and rapid institution of control measures. The Immunization Program is comprised of multiple programs that provide immunization services throughout the state: Adolescent Immunization Program, Adult Immunization Program, Immunization Registry Information System (IRIS), Vaccines for Children Program (VFC), Perinatal Hepatitis B Program, and Immunization Assessment Program.
Resumo:
Due to the power of genetics, the mouse has become a widely used animal model in vision research. However, its eyeball has an axial length of only about 2 mm. The present protocol describes how to easily dissect the small rodent eye post mortem. This allows collecting different tissues of the eye, i.e., cornea, lens, iris, retina, optic nerve, retinal pigment epithelium (RPE), and sclera. We further describe in detail how to process these eye samples in order to obtain high‐quality RNA for RNA expression profiling studies. Depending on the eye tissue to be analyzed, we present appropriate lysis buffers to prepare total protein lysates for immunoblot and immuno‐precipitation analyses. Fixation, inclusion, embedding, and cryosectioning of the globe for routine histological analyses (HE staining, DAPI staining, immunohistochemistry, in situ hybridization) is further presented. These basic protocols should allow novice investigators to obtain eye tissue samples rapidly for their experiments.
Resumo:
BACKGROUND: Classical disease phenotypes are mainly based on descriptions of symptoms and the hypothesis that a given pattern of symptoms provides a diagnosis. With refined technologies there is growing evidence that disease expression in patients is much more diverse and subtypes need to be defined to allow a better targeted treatment. One of the aims of the Mechanisms of the Development of Allergy Project (MeDALL,FP7) is to re-define the classical phenotypes of IgE-associated allergic diseases from birth to adolescence, by consensus among experts using a systematic review of the literature and identify possible gaps in research for new disease markers. This paper describes the methods to be used for the systematic review of the classical IgE-associated phenotypes applicable in general to other systematic reviews also addressing phenotype definitions based on evidence. METHODS/DESIGN: Eligible papers were identified by PubMed search (complete database through April 2011). This search yielded 12,043 citations. The review includes intervention studies (randomized and clinical controlled trials) and observational studies (cohort studies including birth cohorts, case-control studies) as well as case series. Systematic and non-systematic reviews, guidelines, position papers and editorials are not excluded but dealt with separately. Two independent reviewers in parallel conducted consecutive title and abstract filtering scans. For publications where title and abstract fulfilled the inclusion criteria the full text was assessed. In the final step, two independent reviewers abstracted data using a pre-designed data extraction form with disagreements resolved by discussion among investigators. DISCUSSION: The systematic review protocol described here allows to generate broad,multi-phenotype reviews and consensus phenotype definitions. The in-depth analysis of the existing literature on the classification of IgE-associated allergic diseases through such a systematic review will 1) provide relevant information on the current epidemiologic definitions of allergic diseases, 2) address heterogeneity and interrelationships and 3) identify gaps in knowledge.
Resumo:
We wished to evaluate the potential of iontophoresis to promote the delivery of antisense oligonucleotides (ODN) directed at the vascular endothelial growth factor (VEGF)-R2 receptor (KDR/Flk) to the cornea of the rat eye. Fluorescence (CY5)-labeled ODNs in phosphate-buffered saline (PBS) (20 microM) were locally administered to rat eyes, and their fate within the anterior segment was studied. Thirty-four male, 5-week-old Wistar rats were used for all experiments. The rats were divided in four groups. In group I (12 rats, 12 eyes), the ODNs (20 microM) were delivered by iontophoresis (300 microA for 5 minutes) using a specially designed corneal applicator. In group II (12 rats, 12 eyes), the ODNs (20 microM) were delivered using the same applicator, but no electrical current was applied. In group III (6 rats, 6 eyes), a corneal neovascular reaction was induced prior to the application of ODNs (20 microM), and iontophoresis electrical current was delivered as for group I rats. Group IV (4 rats, 4 eyes) received ODN (60 microM) iontophoresis application (300 microA for 5 minutes) and were used for ODN integrity studies. The animals were killed 5 minutes, 90 minutes, and 24 hours after a single ODN application and studied. Topically applied ODNs using the same iontophoresis applicator but without current do not penetrate the cornea and remain confined to the superficial epithelial layer. ODNs delivered with transcorneoscleral iontophoresis penetrate into all corneal layers and are also detected in the iris. In corneas with neovascularization, ODNs were particularly localized within the vascular endothelial cells of the stroma. ODNs extracted from eye tissues 24 hours after iontophoresis remained unaltered. The iontophoresis current did not cause any detectable ocular damage under these conditions. Iontophoresis promotes the delivery of ODNs to the anterior segment of the eye, including all corneal layers. Iontophoresis of ODNs directed at VEGF-R2 may be used for the design of specific antiangiogenic strategy in diseases of the cornea.
Resumo:
PURPOSE: To compare the efficacy and safety of T-Flux implant versus Healon GV in deep sclerectomy. METHODS: Randomized prospective trial of 23 eyes of 20 patients with medically uncontrolled open angle glaucoma over a period of 24 months, who underwent deep sclerectomy with either Healon GV or T-Flux implant. RESULTS: Mean postoperative intraocular pressure was 13.2 +/- 3.0 mm Hg with T-Flux implant (group 1) and 12.2 +/- 3.5 mm Hg with Healon GV (group 2), with a pressure reduction of 53.0% in group 1 (13.2 mm Hg vs. 28.1 mm Hg) and of 48.1% in group 2 (12.2 mm Hg vs. 23.5 mm Hg). Qualified and complete successes were 100% and 95.4% respectively. Pressures equal to or less than 15 mm Hg were 81.8% in group 1 and 90.9% in group 2 with or without treatment, and 63.6% in group 1 and 81.8% in group 2 without treatment. The number of glaucoma treatments dropped from 2.5 +/- 0.9 to 0.4 +/- 0.7 in group 1 and from 2.2 +/- 1.0 to 0.2 +/- 0.4 in group 2. The goniopuncture rate was 63.6% in group 1 and 36.4% in group 2, with a mean pressure drop of 6.1 +/- 3.9 mm Hg and 3.25 +/- 1.2 mm Hg respectively. Overall, slit-lamp diagnosed surgery-related complications included positive Seidel (13.6%), hyphaema (22.7%), choroidal detachment, and iris incarceration (4.5% each). At 2 years, ultrasound biomicroscopy showed mainly low reflective (40.1%) and flattened (36.4%) blebs. Principally latter ones were associated with the need for adjunctive treatment. A hypoechoic area in the suprachoroidal space was seen in at least 59.1% of eyes at 2 years and was not associated with lower intraocular pressure. CONCLUSION: Deep sclerectomy is an effective and safe surgery. However, longer follow up and larger study groups are required to assess the additional benefit of nonabsorbable implants.
Resumo:
El percentatge de població major de 65 anys ha anat augmentant de forma considerable en els últims anys en tots els països desenvolupats. A Espanya, es preveu que a l'any 2020 aquest grup de població suposarà el 20% de la població total, amb un augment dels majors de 85 anys. Per a fer una correcta avaluació nutricional d'aquest grup poblacional cal conèixer els canvis fisiològics que es produeixen durant el procés d'envelliment, entre els quals trobem la disminució de la massa muscular magra (sarcoénia), que fins i tot pot anar acompanyada d'un excés de la massa grassa (obesitat sarcopénica).
Resumo:
En aquest treball s'aporten dades sobre la presència de nous tàxons a la plana occidental catalana, i que impliquen, en la majoria dels casos, ampliar de manera notable l'àrea de distribució de l'espècie. Són de destacar Cheirolophus intybaceus (Lam.) Dostál, Iris spuria L., Lathyrus annuus L., Phagnalon rupestre (L.) DC., Succisa pratensis Moench, Trigonella gladiata Steven ex Bieb. i Orchis laxiflora Lam. subsp. palustris (Jacq.) Bonnier & Layens.
Resumo:
The concentration and ratio of terpenoids in the headspace volatile blend of plants have a fundamental role in the communication of plants and insects. The sesquiterpene (E)-nerolidol is one of the important volatiles with effect on beneficial carnivores for biologic pest management in the field. To optimize de novo biosynthesis and reliable and uniform emission of (E)-nerolidol, we engineered different steps of the (E)-nerolidol biosynthesis pathway in Arabidopsis thaliana. Introduction of a mitochondrial nerolidol synthase gene mediates de novo emission of (E)-nerolidol and linalool. Co-expression of the mitochondrial FPS1 and cytosolic HMGR1 increased the number of emitting transgenic plants (incidence rate) and the emission rate of both volatiles. No association between the emission rate of transgenic volatiles and their growth inhibitory effect could be established. (E)-Nerolidol was to a large extent metabolized to non-volatile conjugates.
Resumo:
PURPOSE: To define the phenotypic manifestation, confirm the genetic basis, and delineate the pathogenic mechanisms underlying an oculoauricular syndrome (OAS). METHODS: Two individuals from a consanguineous family underwent comprehensive clinical phenotyping and electrodiagnostic testing (EDT). Genome-wide microarray analysis and Sanger sequencing of the candidate gene were used to identify the likely causal variant. Protein modelling, Western blotting, and dual luciferase assays were used to assess the pathogenic effect of the variant in vitro. RESULTS: Complex developmental ocular abnormalities of congenital cataract, anterior segment dysgenesis, iris coloboma, early-onset retinal dystrophy, and abnormal external ear cartilage presented in the affected family members. Genetic analyses identified a homozygous c.650A>C; p.(Gln217Pro) missense mutation within the highly conserved homeodomain of the H6 family homeobox 1 (HMX1) gene. Protein modelling predicts that the variant may have a detrimental effect on protein folding and/or stability. In vitro analyses were able to demonstrate that the mutation has no effect on protein expression but adversely alters function. CONCLUSIONS: Oculoauricular syndrome is an autosomal recessive condition that has a profound effect on the development of the external ear, anterior segment, and retina, leading to significant visual loss at an early age. This study has delineated the phenotype and confirmed HMX1 as the gene causative of OAS, enabling the description of only the second family with the condition. HMX1 is a key player in ocular development, possibly in both the pathway responsible for lens and retina development, and via the gene network integral to optic fissure closure.
Resumo:
This article presents some of the conclusions drawn from our research on eye gestures in Latin texts. This investigation is part of a broader study on gestures in Ancient Rome. We have established a classification of eye gestures that comprises two major categories based on the nature of the gestures: gestures that involve eyelid movements and those that consist of iris movements. This paper focuses on two gestures which belong to this second category: staring and rolling the eyes. We analyse the way these gestures were made, how they were referred to by Roman writers and the meanings that may be inferred from their use in literary texts.