943 resultados para Multi-drug resistant bacteria


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Notwithstanding the functional role that the aggregates of some amyloidogenic proteins can play in different organisms, protein aggregation plays a pivotal role in the pathogenesis of a large number of human diseases. One of such diseases is Alzheimer"s disease (AD), where the overproduction and aggregation of the β-amyloid peptide (Aβ) are regarded as early critical factors. Another protein that seems to occupy a prominent position within the complex pathological network of AD is the enzyme acetylcholinesterase (AChE), with classical and non-classical activities involved at the late (cholinergic deficit) and early (Aβ aggregation) phases of the disease. Dual inhibitors of Aβ aggregation and AChE are thus emerging as promising multi-target agents with potential to efficiently modify the natural course of AD. In the initial phases of the drug discovery process of such compounds, in vitro evaluation of the inhibition of Aβ aggregation is rather troublesome, as it is very sensitive to experimental assay conditions, and requires expensive synthetic Aβ peptides, which makes cost-prohibitive the screening of large compound libraries. Herein, we review recently developed multi-target anti-Alzheimer compounds that exhibit both Aβ aggregation and AChE inhibitory activities, and, in some cases also additional valuable activities such as BACE-1 inhibition or antioxidant properties. We also discuss the development of simplified in vivo methods for the rapid, simple, reliable, unexpensive, and high-throughput amenable screening of Aβ aggregation inhibitors that rely on the overexpression of Aβ42 alone or fused with reporter proteins in Escherichia coli.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Se realizó un estudio descriptivo, retrospectivo; se usó la base de datos de los aislamientos microbiológicos documentados en las UCI de la Fundación Santa fe de Bogotá para el año 2014. La prevalencia de bacterias resistentes en los aislamientos de la FSFB no es baja, por lo que se requiere una terapia empírica acertada acorde con la flora local. Se requieren estudios analíticos para evaluar factores asociados al desarrollo de gérmenes multi resistentes y mortalidad por sepsis

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of antibiotics in birds and animals intended for human consumption within the European Union (EU) and elsewhere has been subject to regulation prohibiting the use of antimicrobials as growth promoters and the use of last resort antibiotics in an attempt to reduce the spread of multi-resistant Gram negative bacteria. Given the inexorable spread of antibiotic resistance there is an increasing need for improved monitoring of our food. Using selective media, Gram negative bacteria were isolated from retail chicken of UK-Intensively reared (n = 27), Irish-Intensively reared (n = 19) and UK-Free range (n = 30) origin and subjected to an oligonucleotide based array system for the detection of 47 clinically relevant antibiotic resistance genes (ARGs) and two integrase genes. High incidences of β-lactamase genes were noted in all sample types, acc (67%), cmy (80%), fox (55%) and tem (40%) while chloramphenicol resistant determinants were detected in bacteria from the UK poultry portions and were absent in bacteria from the Irish samples. Denaturing Gradient Gel Electrophoresis (DGGE) was used to qualitatively analyse the Gram negative population in the samples and showed the expected diversity based on band stabbing and DNA sequencing. The array system proved to be a quick method for the detection of antibiotic resistance gene (ARG) burden within a mixed Gram negative bacterial population.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Free films were obtained by the solvent casting method from retrograded starch-pectin dispersions at different polymer proportions and concentrations with and without plasticizer. Film forming dispersions were characterized according to their hardness, birefringence and rheological properties. The polymer dispersions showed a predominantly viscous behavior (G″ > G′) and the absence of plasticizers lead to building of stronger structures, while the occurrence of Maltese crosses in the retrograded dispersions indicates the occurrence of a crystalline organization. Analyses of the films included mechanical properties, thickness, superficial and cross sectional morphology, water vapor permeability, liquid uptake ability, X-ray diffractometry, in vitro dissolution and enzymatic digestion. The high resistant starch content (65.8-96.8%) assured the resistance of materials against enzymatic digestion by pancreatin. Changes in the X-ray diffraction patterns indicated a more organized and crystalline structure of free films in relation to isolated polymers. Increasing of pectin proportion and pH values favored the dissolution and liquid uptake of films. Films prepared with lower polymer concentration presented better barrier function (WVP and mechanical properties). © 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An optimal control strategy for the highly active antiretroviral therapy associated to the acquired immunodeficiency syndrome should be designed regarding a comprehensive analysis of the drug chemotherapy behavior in the host tissues, from major viral replication sites to viral sanctuary compartments. Such approach is critical in order to efficiently explore synergistic, competitive and prohibitive relationships among drugs and, hence, therapy costs and side-effect minimization. In this paper, a novel mathematical model for HIV-1 drug chemotherapy dynamics in distinct host anatomic compartments is proposed and theoretically evaluated on fifteen conventional anti-retroviral drugs. Rather than interdependence between drug type and its concentration profile in a host tissue, simulated results suggest that such profile is importantly correlated with the host tissue under consideration. Furthermore, the drug accumulative dynamics are drastically affected by low patient compliance with pharmacotherapy, even when a single dose lacks. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Staphylococcus aureus TenA (SaTenA) is a thiaminase type II enzyme that catalyzes the deamination of aminopyrimidine, as well as the cleavage of thiamine into 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) and 5-(2-hydroxyethyl)-4-methylthiazole (THZ), within thiamine (vitamin B1) metabolism. Further, by analogy with studies of Bacillus subtilis TenA, SaTenA may act as a regulator controlling the secretion of extracellular proteases such as the subtilisin type of enzymes in bacteria. Thiamine biosynthesis has been identified as a potential drug target of the multi-resistant pathogen S. aureus and therefore all enzymes involved in the S. aureus thiamine pathway are presently being investigated in detail. Here, the structure of SaTenA, determined by molecular replacement and refined at 2.7 A ° resolution to an R factor of 21.6% with one homotetramer in the asymmetric unit in the orthorhombic space group P212121, is presented. The tetrameric state of wild-type (WT) SaTenA was postulated to be the functional biological unit and was confirmed by small-angle X-ray scattering (SAXS) experiments in solution. To obtain insights into structural and functional features of the oligomeric SaTenA, comparative kinetic investigations as well as experiments analyzing the structural stability of the WT SaTenA tetramer versus a monomeric SaTenA mutant were performed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study assessed the safety and efficacy of a novel implantable device therapy in resistant hypertension patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: To assess perioperative outcomes and blood pressure (BP) responses to an implantable carotid sinus baroreflex activating system being investigated for the treatment of resistant hypertension. METHODS: We report on the first seventeen patients enrolled in a multicenter study. Bilateral perivascular carotid sinus electrodes (CSL) and a pulse generator (IPG) are permanently implanted. Optimal placement of the CSL is determined by intraoperative BP responses to test activations. Acute BP responses were tested postoperatively and during the first four months of follow-up. RESULTS: Prior to implant, BP was 189.6+/-27.5/110.7+/-15.3 mmHg despite stable therapy (5.2+/-1.8 antihypertensive drugs). The mean procedure time was 202+/-43 minutes. No perioperative strokes or deaths occurred. System tests performed 1 or up to 3 days postoperatively resulted in significant (all p < or = 0.0001) mean maximum reduction, with standard deviations and 95% confidence limits for systolic BP, diastolic BP and heart rate of 28+/-22 (17, 39) mmHg, 16+/-11 (10, 22) mmHg and 8+/-4 (6, 11) BPM, respectively. Repeated testing during 3 months of therapeutic electrical activation demonstrated a durable response. CONCLUSIONS: These preliminary data suggest an acceptable safety of the procedure with a low rate of adverse events and support further clinical development of baroreflex activation as a new concept to treat resistant hypertension.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Resistance of tumors to pharmacologic agents poses a significant problem in the treatment of human malignancies. This study overviews the scope of clinical resistance and focuses upon current research attempts toward investigation of the phenomenon of multidrug resistance (MDR).^ The objective of this investigation was to determine whether gene amplification had a role in the development of the MDR phenotype in Chinese hamster ovary cells (CHO) primarily selected for resistance to vincristine (VCR). A DNA fragment, previously shown to be amplified in two independently derived Chinese hamster cell lines exhibiting the MDR phenotype, was also amplified in VCR hamster lines. Sequences flanking this fragment were shown to contain coding information for a 4.3 kb transcript overproduced in VCR cells. These sequences were not enriched in double minute DNA preparations isolated from VCR cells. There was an approximately forty-fold increase in both the level of gene amplification and transcript overproduction in the VCR cell lines, independent of the level of primary resistance. This DNA amplification and overproduction of the 4.3 kb transcript was also demonstrated in CHO cells independently selected for resistance to Adriamycin and vinblastine.^ All the DNA sequences of two hamster cDNA clones containing 785 and 932 base pair inserts showed direct homology to the published mouse mdr sequences (about 90%). This sequence conservation held for only portions of the gene when the human mdr1 sequences were compared with those from either the mouse or hamster.^ Somatic cell hybrids, constructed between VCR CHO cells and sensitive murine cells, were used to determine whether there was a functional relationship between the chromosome bearing the amplified sequences and the MDR phenotype. Concordant segregation between vincristine resistance, the MDR phenotype, the presence of MDR-associated amplified sequences, overexpression of the mRNA encoded by these sequences, overexpression of the mRNA encoded by these sequences, and CHO chromosome Z1 was consistent with the hypothesis that there is an amplified gene on chromosome Z1 of the VCR CHO cells which is responsible for MDR in these cells. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Forty methicillin-resistant and -susceptible Staphylococcus pseudintermedius (MRSP and MSSP, respectively) from colonization and infection in dogs and cats were characterized for clonality, antimicrobial, and biocide susceptibility. MSSP were genetically more diverse than MRSP by multi-locus sequence typing and pulsed-field gel electrophoresis. Three different spa types (t06, t02, t05) and two SCCmec types (II-III and V) were detected in the MRSP isolates. All MRSP and two MSSP strains were multidrug-resistant. Several antibiotic resistance genes (mecA, blaZ, tet(M), tet(K), aac(6')-Ie-aph(2')-Ia, aph(3')-III, ant(6)-Ia, sat4, erm(B), lnu(A), dfr(G), and catpC221) were identified by microarray and double mutations in the gyrA and grlA genes and a single mutation in the rpoB gene were detected by sequence analysis. No differences were detected between MSSP and MRSP in the chlorhexidine acetate (CHA) minimum inhibitory concentrations (MICs). However, two MSSP had elevated MIC to triclosan (TCL) and one to benzalkonium chloride and ethidium bromide. One MSSP isolate harboured a qacA gene, while in another a qacB gene was detected. None of the isolates harboured the sh-fabI gene. Three of the biocide products studied had high bactericidal activity (Otodine(®), Clorexyderm Spot Gel(®), Dermocanis Piocure-M(®)), while Skingel(®) failed to achieve a five log reduction in the bacterial counting. S. pseudintermedius have become a serious therapeutic challenge in particular if methicillin- resistance and/or multidrug-resistance are involved. Biocides, like CHA and TCL, seem to be clinically effective and safe topical therapeutic options.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microorganisms express multidrug resistance pumps (MDRs) that can confound antibiotic discovery. We propose the use of mutants deficient in MDRs to overcome this problem. Sensitivity to quinolones and to amphipathic cations (norfloxacin, benzalkonium chloride, cetrimide, pentamidine, etc.) was increased 5- to 30-fold in a Staphylococcus aureus mutant with a disrupted chromosomal copy of the NorA MDR. NorA was required both for increased sensitivity to drugs in the presence of an MDR inhibitor and for increased rate of cation efflux. This requirement suggests that NorA is the major MDR protecting S. aureus from the antimicrobials studied. A 15- to 60-fold increase in sensitivity to antimicrobials also was observed in wild-type cells at an alkaline pH that favors accumulation of cations and weak bases. This effect was synergistic with a norA mutation, resulting in an increase up to 1,000-fold in sensitivity to antimicrobials. The usefulness of applying MDR mutants for natural product screening was demonstrated further by increased sensitivity of the norA− strain to plant alkaloid antimicrobials, which might be natural MDR substrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The potential contribution of recombination to the development of HIV-1 resistance to multiple drugs was investigated. Two distinct viruses, one highly resistant to a protease inhibitor (SC-52151) and the other highly resistant to zidovudine, were used to coinfect T lymphoblastoid cells in culture. The viral genotypes could be distinguished by four mutations conferring drug resistance to each drug and by other sequence differences specific for each parental virus. Progeny virions recovered from mixed infection were passaged in the presence and absence of both zidovudine and SC-52151. Dually resistant mutants emerged rapidly under selective conditions, and these viruses were genetic recombinants. These results emphasize that genetic recombination could contribute to high-level multiple-drug resistance and that this process must be considered in chemotherapeutic strategies for HIV infection.