969 resultados para Motion estimation
Resumo:
Peripheral venous catheters (PVCs) are the simplest and most frequently used method for drug, fluid, and blood product administration in the hospital setting. It is estimated that up to 90% of patients in acute care hospitals require a PVC; however, PVCs are associated with inherent complications, which can be mechanical or infectious. There have been a range of strategies to prevent or reduce PVC-related complications that include optimizing patency through the use of flushing. Little is known about the current status of flushing practice. This observational study quantified preparation and administration time and identified adherence to principles of Aseptic Non-Touch Technique and organizational protocol on PVC flushing by using both manually prepared and prefilled syringes.
Resumo:
This study investigated the possible interplay effects arising from the treatment of moving targets using the dynamic conformal arc therapy (DCAT) technique. Dose from a modulated test beam was measured, with and without phantom motion and with and without a 30o arc rotation, using a diode array placed on a sinusoidally moving platform. Measurements were repeated at five different collimator angles (0, 22.5, 45, 67.5 and 90o), at two different dose rates (300 and 600 MU/min). Results showed that the effect of respiratory motion on the measured dose distribution increased slightly when the beams were delivered as arcs, rather than with a static gantry angle, and that this effect increased substantially as the collimator angle was increased from 0o (MLC motion perpendicular to respiratory motion) to 90o (MLC motion parallel to respiratory motion). The dose oscillations arising from interplay between phantom and MLC motion were found to increase in magnitude when the dose rate was increased. These results led to the development of simple recommendations for minimizing the negative effects of motion interplay on DCAT dose distributions
Resumo:
This thesis studied the influence of patient obesity on prostate motion during radiation therapy treatment delivery, an important consideration in the accurate treatment of prostate cancer. The study highlighted the importance of daily image guidance to correct for prostate motion, increasing radiation dose to the prostate while decreasing radiation dose to surrounding healthy tissues, thereby increasing patient quality of life.
Resumo:
Monitoring pedestrian and cyclists movement is an important area of research in transport, crowd safety, urban design and human behaviour assessment areas. Media Access Control (MAC) address data has been recently used as potential information for extracting features from people’s movement. MAC addresses are unique identifiers of WiFi and Bluetooth wireless technologies in smart electronics devices such as mobile phones, laptops and tablets. The unique number of each WiFi and Bluetooth MAC address can be captured and stored by MAC address scanners. MAC addresses data in fact allows for unannounced, non-participatory, and tracking of people. The use of MAC data for tracking people has been focused recently for applying in mass events, shopping centres, airports, train stations etc. In terms of travel time estimation, setting up a scanner with a big value of antenna’s gain is usually recommended for highways and main roads to track vehicle’s movements, whereas big gains can have some drawbacks in case of pedestrian and cyclists. Pedestrian and cyclists mainly move in built distinctions and city pathways where there is significant noises from other fixed WiFi and Bluetooth. Big antenna’s gains will cover wide areas that results in scanning more samples from pedestrians and cyclists’ MAC device. However, anomalies (such fixed devices) may be captured that increase the complexity and processing time of data analysis. On the other hand, small gain antennas will have lesser anomalies in the data but at the cost of lower overall sample size of pedestrian and cyclist’s data. This paper studies the effect of antenna characteristics on MAC address data in terms of travel-time estimation for pedestrians and cyclists. The results of the empirical case study compare the effects of small and big antenna gains in order to suggest optimal set up for increasing the accuracy of pedestrians and cyclists’ travel-time estimation.
Resumo:
The total entropy utility function is considered for the dual purpose of Bayesian design for model discrimination and parameter estimation. A sequential design setting is proposed where it is shown how to efficiently estimate the total entropy utility for a wide variety of data types. Utility estimation relies on forming particle approximations to a number of intractable integrals which is afforded by the use of the sequential Monte Carlo algorithm for Bayesian inference. A number of motivating examples are considered for demonstrating the performance of total entropy in comparison to utilities for model discrimination and parameter estimation. The results suggest that the total entropy utility selects designs which are efficient under both experimental goals with little compromise in achieving either goal. As such, the total entropy utility is advocated as a general utility for Bayesian design in the presence of model uncertainty.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
Drivers behave in different ways, and these different behaviors are a cause of traffic disturbances. A key objective for simulation tools is to correctly reproduce this variability, in particular for car-following models. From data collection to the sampling of realistic behaviors, a chain of key issues must be addressed. This paper discusses data filtering, robustness of calibration, correlation between parameters, and sampling techniques of acceleration-time continuous car-following models. The robustness of calibration is systematically investigated with an objective function that allows confidence regions around the minimum to be obtained. Then, the correlation between sets of calibrated parameters and the validity of the joint distributions sampling techniques are discussed. This paper confirms the need for adapted calibration and sampling techniques to obtain realistic sets of car-following parameters, which can be used later for simulation purposes.
Resumo:
Precise satellite orbit and clocks are essential for providing high accuracy real-time PPP (Precise Point Positioning) service. However, by treating the predicted orbits as fixed, the orbital errors may be partially assimilated by the estimated satellite clock and hence impact the positioning solutions. This paper presents the impact analysis of errors in radial and tangential orbital components on the estimation of satellite clocks and PPP through theoretical study and experimental evaluation. The relationship between the compensation of the orbital errors by the satellite clocks and the satellite-station geometry is discussed in details. Based on the satellite clocks estimated with regional station networks of different sizes (∼100, ∼300, ∼500 and ∼700 km in radius), results indicated that the orbital errors compensated by the satellite clock estimates reduce as the size of the network increases. An interesting regional PPP mode based on the broadcast ephemeris and the corresponding estimated satellite clocks is proposed and evaluated through the numerical study. The impact of orbital errors in the broadcast ephemeris has shown to be negligible for PPP users in a regional network of a radius of ∼300 km, with positioning RMS of about 1.4, 1.4 and 3.7 cm for east, north and up component in the post-mission kinematic mode, comparable with 1.3, 1.3 and 3.6 cm using the precise orbits and the corresponding estimated clocks. Compared with the DGPS and RTK positioning, only the estimated satellite clocks are needed to be disseminated to PPP users for this approach. It can significantly alleviate the communication burdens and therefore can be beneficial to the real time applications.
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
Resumo:
A recent hydrodynamic theory of liquid slippage on a solid substrate (Kirkinis & Davis, Phys. Rev. Lett., vol. 110, 2013, 234503) gives rise to a sequence of eddies (Moffatt vortices) that co-move with a moving contact line (CL) in a liquid wedge. The presence of these vortices is established through secular equations that depend on the dynamic contact angle α and capillary number Ca. The limiting case α→O is associated with the appearance of such vortices in a channel. The vortices are generated by the relative motion of the interfaces, which in turn is due to the motion of the CL. This effect has yet to be observed in experiment.
Resumo:
Gene expression is arguably the most important indicator of biological function. Thus identifying differentially expressed genes is one of the main aims of high throughout studies that use microarray and RNAseq platforms to study deregulated cellular pathways. There are many tools for analysing differentia gene expression from transciptomic datasets. The major challenge of this topic is to estimate gene expression variance due to the high amount of ‘background noise’ that is generated from biological equipment and the lack of biological replicates. Bayesian inference has been widely used in the bioinformatics field. In this work, we reveal that the prior knowledge employed in the Bayesian framework also helps to improve the accuracy of differential gene expression analysis when using a small number of replicates. We have developed a differential analysis tool that uses Bayesian estimation of the variance of gene expression for use with small numbers of biological replicates. Our method is more consistent when compared to the widely used cyber-t tool that successfully introduced the Bayesian framework to differential analysis. We also provide a user-friendly web based Graphic User Interface for biologists to use with microarray and RNAseq data. Bayesian inference can compensate for the instability of variance caused when using a small number of biological replicates by using pseudo replicates as prior knowledge. We also show that our new strategy to select pseudo replicates will improve the performance of the analysis. - See more at: http://www.eurekaselect.com/node/138761/article#sthash.VeK9xl5k.dpuf
Resumo:
"In Perpetual Motion is an "historical choreography" of power, pedagogy, and the child from the 1600s to the early 1900s. It breaks new ground by historicizing the analytics of power and motion that have interpenetrated renditions of the young. Through a detailed examination of the works of John Locke, Jean-Jacques Rousseau, Johann Herbart, and G. Stanley Hall, this book maps the discursive shifts through which the child was given a unique nature, inscribed in relation to reason, imbued with an effectible interiority, and subjected to theories of power and motion. The book illustrates how developmentalist visions took hold in U.S. public school debates. It documents how particular theories of power became submerged and taken for granted as essences inside the human subject. In Perpetual Motion studiously challenges views of power as in or of the gaze, tracing how different analytics of power have been used to theorize what gazing could notice."--BOOK JACKET.
Resumo:
Numerical analysis of cracked structures often involves numerical estimation of stress intensity factors (SIFs) at a crack tip/front. A newly developed formulation called universal crack closure integral (UCCI) for the evaluation of potential energy release rates (PERRs) and the corresponding SIFs is presented in this paper. Unlike the existing element dedicated forms of crack closure integrals (MCCI, VCCI) with application limited to finite element analysis, this new numerical SIF/PERR estimation technique is independent of the basic stress analysis procedure, making it universally applicable. The second merit of this procedure is that it avoids the generally error-producing zones close to the crack tip/front singularity. The UCCI procedure, based on Irwin's original CCI, is formulated and explored using a simple 2D problem of a straight crack in an infinite sheet. It is then applied to some three-dimensional crack geometries with the stresses and displacements obtained from a boundary element program.