983 resultados para Modular coordination (Architecture)
Resumo:
This paper proposes a Petri net model for a commercial network processor (Intel iXP architecture) which is a multithreaded multiprocessor architecture. We consider and model three different applications viz., IPv4 forwarding, network address translation, and IP security running on IXP 2400/2850. A salient feature of the Petri net model is its ability to model the application, architecture and their interaction in great detail. The model is validated using the Intel proprietary tool (SDK 3.51 for IXP architecture) over a range of configurations. We conduct a detailed performance evaluation, identify the bottleneck resource, and propose a few architectural extensions and evaluate them in detail.
Resumo:
Precision, sophistication and economic factors in many areas of scientific research that demand very high magnitude of compute power is the order of the day. Thus advance research in the area of high performance computing is getting inevitable. The basic principle of sharing and collaborative work by geographically separated computers is known by several names such as metacomputing, scalable computing, cluster computing, internet computing and this has today metamorphosed into a new term known as grid computing. This paper gives an overview of grid computing and compares various grid architectures. We show the role that patterns can play in architecting complex systems, and provide a very pragmatic reference to a set of well-engineered patterns that the practicing developer can apply to crafting his or her own specific applications. We are not aware of pattern-oriented approach being applied to develop and deploy a grid. There are many grid frameworks that are built or are in the process of being functional. All these grids differ in some functionality or the other, though the basic principle over which the grids are built is the same. Despite this there are no standard requirements listed for building a grid. The grid being a very complex system, it is mandatory to have a standard Software Architecture Specification (SAS). We attempt to develop the same for use by any grid user or developer. Specifically, we analyze the grid using an object oriented approach and presenting the architecture using UML. This paper will propose the usage of patterns at all levels (analysis. design and architectural) of the grid development.
Resumo:
Real-Time services are traditionally supported on circuit switched network. However, there is a need to port these services on packet switched network. Architecture for audio conferencing application over the Internet in the light of ITU-T H.323 recommendations is considered. In a conference, considering packets only from a set of selected clients can reduce speech quality degradation because mixing packets from all clients can lead to lack of speech clarity. A distributed algorithm and architecture for selecting clients for mixing is suggested here based on a new quantifier of the voice activity called “Loudness Number” (LN). The proposed system distributes the computation load and reduces the load on client terminals. The highlights of this architecture are scalability, bandwidth saving and speech quality enhancement. Client selection for playing out tries to mimic a physical conference where the most vocal participants attract more attention. The contributions of the paper are expected to aid H.323 recommendations implementations for Multipoint Processors (MP). A working prototype based on the proposed architecture is already functional.
Resumo:
The highest levels of security can be achieved through the use of more than one type of cryptographic algorithm for each security function. In this paper, the REDEFINE polymorphic architecture is presented as an architecture framework that can optimally support a varied set of crypto algorithms without losing high performance. The presented solution is capable of accelerating the advanced encryption standard (AES) and elliptic curve cryptography (ECC) cryptographic protocols, while still supporting different flavors of these algorithms as well as different underlying finite field sizes. The compelling feature of this cryptosystem is the ability to provide acceleration support for new field sizes as well as new (possibly proprietary) cryptographic algorithms decided upon after the cryptosystem is deployed.
Resumo:
Coordination-driven self-assembly of binuclear half-sandwich p-cymene ruthenium(II) complexes [Ru-2(mu-eta(4)-C2O4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1a) or [Ru-2(mu-eta(4)-N,N'-diphenyloxamidato)(MeOH)(2)(eta(6)-p-cymene)(2)]( O3SCF3)(2) (1b) separately with an imidazole-based tetratopic donor L in methanol affords two tetranuclear metallamacrocycles 2a and 2b, respectively. Conversely, the similar combination of L with 2,5-dihydroxy-1,4-benzoquinonato (dhbq) bridged binuclear complex [Ru-2(mu-eta(C6H2O4)-C-4)(MeOH)(2)(eta(6)-p-cymene)(2)](O3SCF3)(2) (1c) in 1:2 molar ratio resulted in an octanuclear macrocyclic cage 2c. All the self-assembled macrocycles 2a-2c were isolated as their triflate salts in high yields and were characterized fully by multinuclear (H-1, C-13 and F-19) NMR, infrared (IR) and electrospray ionization mass spectrometry (ESIMS). In addition, the molecular structure of macrocycle 2a was established unequivocally by single-crystal X-ray diffraction analysis and adopts a tetranuclear rectangular geometry with the dimensions of 5.53 angstrom x 12.39 angstrom. Furthermore, the photo-and electrochemical properties of these newly synthesized assemblies have been studied by using UV-vis absorption and cyclic voltammetry analysis.
Resumo:
Template-assisted formation of multicomponent Pd6 coordination prisms and formation of their self-templated triply interlocked Pd12 analogues in the absence of an external template have been established in a single step through Pd?N/Pd?O coordination. Treatment of cis-[Pd(en)(NO3)2] with K3tma and linear pillar 4,4'-bpy (en=ethylenediamine, H3tma=benzene-1,3,5-tricarboxylic acid, 4,4'-bpy=4,4'-bipyridine) gave intercalated coordination cage [{Pd(en)}6(bpy)3(tma)2]2[NO3]12 (1) exclusively, whereas the same reaction in the presence of H3tma as an aromatic guest gave a H3tma-encapsulating non-interlocked discrete Pd6 molecular prism [{Pd(en)}6(bpy)3(tma)2(H3tma)2][NO3]6 (2). Though the same reaction using cis-[Pd(NO3)2(pn)] (pn=propane-1,2-diamine) instead of cis-[Pd(en)(NO3)2] gave triply interlocked coordination cage [{Pd(pn)}6(bpy)3(tma)2]2[NO3]12 (3) along with non-interlocked Pd6 analogue [{Pd(pn)}6(bpy)3(tma)2](NO3)6 (3'), and the presence of H3tma as a guest gave H3tma-encapsulating molecular prism [{Pd(pn)}6(bpy)3(tma)2(H3tma)2][NO3]6 (4) exclusively. In solution, the amount of 3' decreases as the temperature is decreased, and in the solid state 3 is the sole product. Notably, an analogous reaction using the relatively short pillar pz (pz=pyrazine) instead of 4,4'-bpy gave triply interlocked coordination cage [{Pd(pn)}6(pz)3(tma)2]2[NO3]12 (5) as the single product. Interestingly, the same reaction using slightly more bulky cis-[Pd(NO3)2(tmen)] (tmen=N,N,N',N'-tetramethylethylene diamine) instead of cis-[Pd(NO3)2(pn)] gave non-interlocked [{Pd(tmen)}6(pz)3(tma)2][NO3]6 (6) exclusively. Complexes 1, 3, and 5 represent the first examples of template-free triply interlocked molecular prisms obtained through multicomponent self-assembly. Formation of the complexes was supported by IR and multinuclear NMR (1H and 13C) spectroscopy. Formation of guest-encapsulating complexes (2 and 4) was confirmed by 2D DOSY and ROESY NMR spectroscopic analyses, whereas for complexes 1, 3, 5, and 6 single-crystal X-ray diffraction techniques unambiguously confirmed their formation. The gross geometries of H3tma-encapsulating complexes 2 and 4 were obtained by universal force field (UFF) simulations.
Resumo:
Electrostatic self-assembly of colloidal and nanoparticles has attracted a lot of attention in recent years, since it offers the possibility of producing novel crystalline structures that have the potential to be used as advanced materials for photonic and other applications. The stoichiometry of these crystals is not constrained by charge neutrality of the two types of particles due to the presence of counterions, and hence a variety of three-dimensional structures have been observed depending on the relative sizes of the particles and their charge. Here we report structural polymorphism of two-dimensional crystals of oppositely charged linear macroions, namely DNA and self-assembled cylindrical micelles of cationic amphiphiles. Our system differs from those studied earlier in terms of the presence of a strongly binding counterion that competes with DNA to bind to the micelle. The presence of these counterions leads to novel structures of these crystals, such as a square lattice and a root 3 x root 3 superlattice of an underlying hexagonal lattice, determined from a detailed analysis of the small-angle diffraction data. These lower-dimensional equilibrium systems can play an important role in developing a deeper theoretical understanding of the stability of crystals of oppositely charged particles. Further, it should be possible to use the same design principles to fabricate structures on a longer length-scale by an appropriate choice of the two macroions.
Resumo:
A new carbazole-based 90 degrees dipyridyl donor 3,6-di(4-pyridylethynyl)carbazole (L) containing carbazole-ethynyl functionality is synthesized in reasonable yield using the Sonagashira coupling reaction. Multinuclear NMR, electrospray ionization-mass spectrometry (ESI-MS), including single crystal X-ray diffraction analysis characterized this 90 degrees building unit. The stoichiometry combination of L with several Pd(II)/Pt(II)-based 90 degrees acceptors (1a-1d) yielded 2 + 2] self-assembled metallacycles (2a-2d) under mild conditions in quantitative yields 1a = cis-(dppf)Pd(OTf)(2); 1b = cis-(dppf)Pt(OTf)(2); 1c = cis-(tmen)Pd(NO3)(2); 1d = 3,6-bis{trans-Pt(C C) (PEt3)(2)(NO3))carbazole]. All these macrocycles were characterized by various spectroscopic techniques, and the molecular structure of 2a was unambiguously determined by single crystal X-ray diffraction analysis. Incorporation of ethynyl functionality to the carbazole backbone causes the resulted macrocycles (2a-2d) to be pi-electron rich and thereby exhibit strong emission characteristics. The macrocycle 2a has a large internal concave aromatic surface. The fluorescence quenching study suggests that 2a forms a similar to 1:1 complex with C-60 with a high association constant of K-sv = 1.0 X 10(5) M-1.
Resumo:
Today's SoCs are complex designs with multiple embedded processors, memory subsystems, and application specific peripherals. The memory architecture of embedded SoCs strongly influences the power and performance of the entire system. Further, the memory subsystem constitutes a major part (typically up to 70%) of the silicon area for the current day SoC. In this article, we address the on-chip memory architecture exploration for DSP processors which are organized as multiple memory banks, where banks can be single/dual ported with non-uniform bank sizes. In this paper we propose two different methods for physical memory architecture exploration and identify the strengths and applicability of these methods in a systematic way. Both methods address the memory architecture exploration for a given target application by considering the application's data access characteristics and generates a set of Pareto-optimal design points that are interesting from a power, performance and VLSI area perspective. To the best of our knowledge, this is the first comprehensive work on memory space exploration at physical memory level that integrates data layout and memory exploration to address the system objectives from both hardware design and application software development perspective. Further we propose an automatic framework that explores the design space identifying 100's of Pareto-optimal design points within a few hours of running on a standard desktop configuration.
Resumo:
Grouping and coordination tactics for ground attack missions by a heterogeneous mix of reconnaissance, enemy suppression, and attack unmanned aerial vehicles (UAVs) is presented. Dubins' paths are used to determine the optimal number of attack UAVs and their positional and heading freedoms, as functions of weapon seeker range and field of view. A generic battlefield scenario with layered defense is created and the tactics are evaluated on a Group Flyer simulation platform for both nominal and off-nominal conditions.
Resumo:
Maternal malnutrition affects every aspect of fetal development. The present study asked the question whether a low-protein diet of the mother could result in motor deficits in the offspring. Further, to examine whether cerebellar pathology was correlated with motor deficits, several parameters of the postnatal development of the cerebellum were assayed. This is especially important because the development of the cerebellum is unique in that the time scale of development is protracted compared with that of the cortex or hippocampus. The most important result of the study is that animals born to protein-deficient mothers showed significant delays in motor development as assessed by rotarod and gait analysis. These animals also showed reduced cell proliferation and reduced thickness in the external granular layer. There was a reduction in the number of calbindin-positive Purkinje cells (PC) and granular cells in the internal granular layer. However, glial fibrillary acidic protein-positive population including Bergmann glia remained unaffected. We therefore conclude that the development of the granular cell layer and the PC is specifically prone to the effects of protein malnutrition potentially due to their protracted developmental period from approximately embryonic day 11 to 13 until about the third postnatal week.
Resumo:
Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).
Resumo:
A new Cu(II)-picolinate complex was synthesized and characterized by single crystal X-ray crystallography. The complex crystallizes in the centrosymmetric triclinic space group P (1) over bar (no. 2). Picolinate in the complex extends the neutral unit into a 1-D chain through mu(2)-bridging carboxylate. The complex has a hydrogen bonding acceptor in the second coordination sphere allowing lattice water to assemble neighboring chains. Water self-assembles to form a zig-zag 1-D chain. The adjacent chains are assembled by C-H center dot center dot center dot O interactions result in the formation 2-D hydrogen bonded network. The overall hydrogen bonding between water chain and Cu-picolinate network yields a 3-D hydrogen bonded coordination network. X-ray structural analysis, FTIR and thermal analysis have been used to characterize the reported compound in the solid state.