895 resultados para Model-driven Architecture, Goal-Oriented design, usability
Resumo:
Este artículo presenta un nuevo método de identificación para sistemas de fase no mínima basado en la respuesta escalón. El enfoque propuesto provee un modelo aproximado de segundo orden evitando diseños experimentales complejos. El método propuesto es un algoritmo de identificación cerrado basado en puntos característicos de la respuesta escalón de sistemas de fase no mínima de segundo orden. Él es validado usando diferentes modelos lineales. Ellos tienen respuesta inversa entre 3,5% y 38% de la respuesta en régimen permanente. En simulaciones, ha sido demostrado que resultados satisfactorios pueden ser obtenidos usando el procedimiento de identificación propuesto, donde los parámetros identificados presentan errores relativos medios, menores que los obtenidos mediante el método de Balaguer.
Resumo:
We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2015.
Resumo:
Resumen El efecto de múltiples variables sobre el bienestar social y económico en las pequeñas y medianas empresas puede ser analizado tomando en cuenta las condiciones sistémicas en el modelo propuesto. Este artículo ofrece un marco teórico o modelo para comprender y explicar la relación entre las variables independientes tales como el crédito, mercados, empresariedad, entre otras, y la variable dependiente tal como los ingresos, la producción o el empleo. El propósito fundamental es organizar la mayoría de variables para determinar porqué los ingresos y el empleo no es sostenible par alas pequeñas y medianas empresas. Por lo tanto, factores sociales, económicos así como culturales e institucionales han sido incluidos en el análisis. El modelo desarrollado puede ayudar a mejorar el diseño de estrategias para lograr el éxito de las pequeñas y medianas empresas y el marco de política pública para el gobierno en Costa Rica. Abstract The effect of multiples variables on the social and economic welfare in the Small and medium size enterprises can be analized taking in account systemic conditions in this model.This paper offers a theoretical framework or model to understand and explain the relationship between independent variables such as credit, markets, entrepreneurship, among others, and dependent variable such as incomes, production or employment rate. The main idea is organize the all variables to determine why the income or employment level is not sustainable for SMEs. Therefore, social and economic factors as well as cultural and institutional components have been included in this analysis. The developed model can help to improve design and management of competitiveness strategies for SMEs and policy framework for the government in Costa Rica.
Resumo:
Part 11: Reference and Conceptual Models
Resumo:
Part 9: Innovation Networks
Resumo:
The purpose of this research is to study the portable or reassemblable architectures, which, different from conventional architecture (whose designs are of permanent buildings), corresponds to the designing of spaces with temporary purposes. The focus of the study is the architectural design of spaces that are produced from building systems that can to be moved to different places (process of assembly / disassembly / reassembly) in order to identify the types of spaces generated and the processes used in their design / projecting. The aim is to investigate relationships between the initial project conceived based on a Reassemblable Construction System (RCS) and its application in the architectural design of professionals and students in order to contribute to the understanding of the specificities of this type of design activity. To this end it was developed the exploratory research based on multimedia methods, which includes: documentary analysis, technical visits, interviews, surveys, academic exercise and documentation by images. Although the study is not conclusive, the results indicate significant differences between the point of view of the RCS´s designers and its users (architects and architecture students) since the users demonstrated to have some difficulty to access the features provided for the first group, in particular the students. It is also demonstrated that the use of RCSs seems to change the appreciation / hierarchization of the conditions of project design, since, unlike what happens in traditional architectural design, the designers who use them seem to be more concerned with constructive issues, especially the structural elements (support and covering), instead of functionality, aesthetics and even physical characteristics of the site
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitectura, apresentada na Universidade de Lisboa - Faculdade de Arquitectura.
Resumo:
Dissertação para obtenção do grau de Mestre em Arquitetura, apresentada na Universidade de Lisboa - Faculdade de Arquitetura.
Resumo:
Very old individuals seem to present an admirable capacity to overcome adversities and adapt to the challenges of advanced age. However, studies focusing successful pattern of centenarians found that they may easily fail to be categorized as successful agers when objective criteria are applied. The present study examines if centenarians can be considered successful agers. Following Rowe and Kahn's successful aging model, the primary goal was to clarify whether centenarians are able to be successful agers according to objective and subjective criteria of no major disease and disability, high cognitive and physical functioning and engagement with life. The second goal was to investigate whether socio-demographic factors, psychological, social, and economic resources are related to objective and subjective successful aging profiles.
Resumo:
The headquarters and park of the Calouste Gulbenkian Foundation in Lisbon represent the first modern Portuguese environment with an outstanding relation between exterior and interior as a spatial continuum . As such, the project refused the more common conceptual attitude of interior plus exterior. This unitary view revealed a clear understanding of the proposed site for the project and what could have been Calouste Sarkis Gulbenkian (1869-1955) expectations, while concretizing Modern Movement ideals regarding landscape architecture and architecture. Through its design the park mediates the relation between the buildings’ super-structures, the urban context, and the human scale, while generating a unifying system established by the complicity between natural and synthetic materials. From the first moment of the project’s design process, this complicity resulted in a set of strategies that met programmatic
Resumo:
Inverse problems are at the core of many challenging applications. Variational and learning models provide estimated solutions of inverse problems as the outcome of specific reconstruction maps. In the variational approach, the result of the reconstruction map is the solution of a regularized minimization problem encoding information on the acquisition process and prior knowledge on the solution. In the learning approach, the reconstruction map is a parametric function whose parameters are identified by solving a minimization problem depending on a large set of data. In this thesis, we go beyond this apparent dichotomy between variational and learning models and we show they can be harmoniously merged in unified hybrid frameworks preserving their main advantages. We develop several highly efficient methods based on both these model-driven and data-driven strategies, for which we provide a detailed convergence analysis. The arising algorithms are applied to solve inverse problems involving images and time series. For each task, we show the proposed schemes improve the performances of many other existing methods in terms of both computational burden and quality of the solution. In the first part, we focus on gradient-based regularized variational models which are shown to be effective for segmentation purposes and thermal and medical image enhancement. We consider gradient sparsity-promoting regularized models for which we develop different strategies to estimate the regularization strength. Furthermore, we introduce a novel gradient-based Plug-and-Play convergent scheme considering a deep learning based denoiser trained on the gradient domain. In the second part, we address the tasks of natural image deblurring, image and video super resolution microscopy and positioning time series prediction, through deep learning based methods. We boost the performances of supervised, such as trained convolutional and recurrent networks, and unsupervised deep learning strategies, such as Deep Image Prior, by penalizing the losses with handcrafted regularization terms.
Resumo:
Land use is a crucial link between human activities and the natural environment and one of the main driving forces of global environmental change. Large parts of the terrestrial land surface are used for agriculture, forestry, settlements and infrastructure. Given the importance of land use, it is essential to understand the multitude of influential factors and resulting land use patterns. An essential methodology to study and quantify such interactions is provided by the adoption of land-use models. By the application of land-use models, it is possible to analyze the complex structure of linkages and feedbacks and to also determine the relevance of driving forces. Modeling land use and land use changes has a long-term tradition. In particular on the regional scale, a variety of models for different regions and research questions has been created. Modeling capabilities grow with steady advances in computer technology, which on the one hand are driven by increasing computing power on the other hand by new methods in software development, e.g. object- and component-oriented architectures. In this thesis, SITE (Simulation of Terrestrial Environments), a novel framework for integrated regional sland-use modeling, will be introduced and discussed. Particular features of SITE are the notably extended capability to integrate models and the strict separation of application and implementation. These features enable efficient development, test and usage of integrated land-use models. On its system side, SITE provides generic data structures (grid, grid cells, attributes etc.) and takes over the responsibility for their administration. By means of a scripting language (Python) that has been extended by language features specific for land-use modeling, these data structures can be utilized and manipulated by modeling applications. The scripting language interpreter is embedded in SITE. The integration of sub models can be achieved via the scripting language or by usage of a generic interface provided by SITE. Furthermore, functionalities important for land-use modeling like model calibration, model tests and analysis support of simulation results have been integrated into the generic framework. During the implementation of SITE, specific emphasis was laid on expandability, maintainability and usability. Along with the modeling framework a land use model for the analysis of the stability of tropical rainforest margins was developed in the context of the collaborative research project STORMA (SFB 552). In a research area in Central Sulawesi, Indonesia, socio-environmental impacts of land-use changes were examined. SITE was used to simulate land-use dynamics in the historical period of 1981 to 2002. Analogous to that, a scenario that did not consider migration in the population dynamics, was analyzed. For the calculation of crop yields and trace gas emissions, the DAYCENT agro-ecosystem model was integrated. In this case study, it could be shown that land-use changes in the Indonesian research area could mainly be characterized by the expansion of agricultural areas at the expense of natural forest. For this reason, the situation had to be interpreted as unsustainable even though increased agricultural use implied economic improvements and higher farmers' incomes. Due to the importance of model calibration, it was explicitly addressed in the SITE architecture through the introduction of a specific component. The calibration functionality can be used by all SITE applications and enables largely automated model calibration. Calibration in SITE is understood as a process that finds an optimal or at least adequate solution for a set of arbitrarily selectable model parameters with respect to an objective function. In SITE, an objective function typically is a map comparison algorithm capable of comparing a simulation result to a reference map. Several map optimization and map comparison methodologies are available and can be combined. The STORMA land-use model was calibrated using a genetic algorithm for optimization and the figure of merit map comparison measure as objective function. The time period for the calibration ranged from 1981 to 2002. For this period, respective reference land-use maps were compiled. It could be shown, that an efficient automated model calibration with SITE is possible. Nevertheless, the selection of the calibration parameters required detailed knowledge about the underlying land-use model and cannot be automated. In another case study decreases in crop yields and resulting losses in income from coffee cultivation were analyzed and quantified under the assumption of four different deforestation scenarios. For this task, an empirical model, describing the dependence of bee pollination and resulting coffee fruit set from the distance to the closest natural forest, was integrated. Land-use simulations showed, that depending on the magnitude and location of ongoing forest conversion, pollination services are expected to decline continuously. This results in a reduction of coffee yields of up to 18% and a loss of net revenues per hectare of up to 14%. However, the study also showed that ecological and economic values can be preserved if patches of natural vegetation are conservated in the agricultural landscape. -----------------------------------------------------------------------
Resumo:
Performance and manufacturability are two important issues that must be taken into account during MEMS design. Existing MEMS design models or systems follow a process-driven design paradigm, that is, design starts from the specification of process sequence or the customization of foundry-ready process template. There has been essentially no methodology or model that supports generic, high-level design synthesis for MEMS conceptual design. As a result, there lacks a basis for specifying the initial process sequences. To address this problem, this paper proposes a performance-driven, microfabrication-oriented methodology for MEMS conceptual design. A unified behaviour representation method is proposed which incorporates information of both physical interactions and chemical/biological/other reactions. Based on this method, a behavioural process based design synthesis model is proposed, which exploits multidisciplinary phenomena for design solutions, including both the structural components and their configuration for the MEMS device, as well as the necessary substances for the chemical/biological/other reactions. The model supports both forward and backward synthetic search for suitable phenomena. To ensure manufacturability, a strategy of using microfabrication-oriented phenomena as design knowledge is proposed, where the phenomena are developed from existing MEMS devices that have associated MEMS-specific microfabrication processes or foundry-ready process templates. To test the applicability of the proposed methodology, the paper also studies microfluidic device design and uses a micro-pump design for the case study.
Resumo:
The term "Logic Programming" refers to a variety of computer languages and execution models which are based on the traditional concept of Symbolic Logic. The expressive power of these languages offers promise to be of great assistance in facing the programming challenges of present and future symbolic processing applications in Artificial Intelligence, Knowledge-based systems, and many other areas of computing. The sequential execution speed of logic programs has been greatly improved since the advent of the first interpreters. However, higher inference speeds are still required in order to meet the demands of applications such as those contemplated for next generation computer systems. The execution of logic programs in parallel is currently considered a promising strategy for attaining such inference speeds. Logic Programming in turn appears as a suitable programming paradigm for parallel architectures because of the many opportunities for parallel execution present in the implementation of logic programs. This dissertation presents an efficient parallel execution model for logic programs. The model is described from the source language level down to an "Abstract Machine" level suitable for direct implementation on existing parallel systems or for the design of special purpose parallel architectures. Few assumptions are made at the source language level and therefore the techniques developed and the general Abstract Machine design are applicable to a variety of logic (and also functional) languages. These techniques offer efficient solutions to several areas of parallel Logic Programming implementation previously considered problematic or a source of considerable overhead, such as the detection and handling of variable binding conflicts in AND-Parallelism, the specification of control and management of the execution tree, the treatment of distributed backtracking, and goal scheduling and memory management issues, etc. A parallel Abstract Machine design is offered, specifying data areas, operation, and a suitable instruction set. This design is based on extending to a parallel environment the techniques introduced by the Warren Abstract Machine, which have already made very fast and space efficient sequential systems a reality. Therefore, the model herein presented is capable of retaining sequential execution speed similar to that of high performance sequential systems, while extracting additional gains in speed by efficiently implementing parallel execution. These claims are supported by simulations of the Abstract Machine on sample programs.