954 resultados para Model information
Resumo:
While organizations strive to leverage the vast information generated daily from social media platforms, and decision makers are keen to identify and exploit its value, the quality of this information remains uncertain. Past research on information quality criteria and evaluation issues in social media is largely disparate, incomparable and lacking any common theoretical basis. In attention to this gap, this study adapts existing guidelines and exemplars of construct conceptualization in information systems research, to deductively define information quality and related criteria in the social media context. Building on a notion of information derived from semiotic theory, this paper suggests a general conceptualization of information quality in the social media context that can be used in future research to develop more context specific conceptual models.
Resumo:
Many organizations realize that increasing amounts of data (“Big Data”) need to be dealt with intelligently in order to compete with other organizations in terms of efficiency, speed and services. The goal is not to collect as much data as possible, but to turn event data into valuable insights that can be used to improve business processes. However, data-oriented analysis approaches fail to relate event data to process models. At the same time, large organizations are generating piles of process models that are disconnected from the real processes and information systems. In this chapter we propose to manage large collections of process models and event data in an integrated manner. Observed and modeled behavior need to be continuously compared and aligned. This results in a “liquid” business process model collection, i.e. a collection of process models that is in sync with the actual organizational behavior. The collection should self-adapt to evolving organizational behavior and incorporate relevant execution data (e.g. process performance and resource utilization) extracted from the logs, thereby allowing insightful reports to be produced from factual organizational data.
Resumo:
Advances in neural network language models have demonstrated that these models can effectively learn representations of words meaning. In this paper, we explore a variation of neural language models that can learn on concepts taken from structured ontologies and extracted from free-text, rather than directly from terms in free-text. This model is employed for the task of measuring semantic similarity between medical concepts, a task that is central to a number of techniques in medical informatics and information retrieval. The model is built with two medical corpora (journal abstracts and patient records) and empirically validated on two ground-truth datasets of human-judged concept pairs assessed by medical professionals. Empirically, our approach correlates closely with expert human assessors ($\approx$ 0.9) and outperforms a number of state-of-the-art benchmarks for medical semantic similarity. The demonstrated superiority of this model for providing an effective semantic similarity measure is promising in that this may translate into effectiveness gains for techniques in medical information retrieval and medical informatics (e.g., query expansion and literature-based discovery).
Resumo:
Purpose The purpose of this research is to explore the idea of the participatory library in higher education settings. This research aims to address the question, what is a participatory university library? Design/methodology/approach Grounded theory approach was adopted. In-depth individual interviews were conducted with two diverse groups of participants including ten library staff members and six library users. Data collection and analysis were carried out simultaneously and complied with Straussian grounded theory principles and techniques. Findings Three core categories representing the participatory library were found including “community”, “empowerment”, and “experience”. Each category was thoroughly delineated via sub-categories, properties, and dimensions that all together create a foundation for the participatory library. A participatory library model was also developed together with an explanation of model building blocks that provide a deeper understanding of the participatory library phenomenon. Research limitations The research focuses on a specific library system, i.e., academic libraries. Therefore, the research results may not be very applicable to public, special, and school library contexts. Originality/value This is the first empirical study developing a participatory library model. It provides librarians, library managers, researchers, library students, and the library community with a holistic picture of the contemporary library.
Resumo:
This thesis targets on a challenging issue that is to enhance users' experience over massive and overloaded web information. The novel pattern-based topic model proposed in this thesis can generate high-quality multi-topic user interest models technically by incorporating statistical topic modelling and pattern mining. We have successfully applied the pattern-based topic model to both fields of information filtering and information retrieval. The success of the proposed model in finding the most relevant information to users mainly comes from its precisely semantic representations to represent documents and also accurate classification of the topics at both document level and collection level.
Resumo:
This paper introduces a modified Kano approach to analysing and classifying quality attributes that drive student satisfaction in tertiary education. The approach provides several benefits over the traditional Kano approach. Firstly, it uses existing student evaluations of subjects in the educational institution instead of purpose-built surveys as the data source. Secondly, since the data source includes qualitative comments and feedback, it has the exploratory capability to identify emerging and unique attributes. Finally, since the quality attributes identified could be tied directly to students’ detailed feedback, the approach enables practitioners to easily translate the results into concrete action plans. In this paper, the approach is applied to analysing 26 subjects in the information systems school of an Australia university. The approach has enabled the school to uncover new quality attributes and paves the way for other institutions to use their student evaluations to continually understand and addressed students’ changing needs.
Resumo:
Purpose Performance heterogeneity between collaborative infrastructure projects is typically examined by considering procurement systems and their governance mechanisms at static points in time. The literature neglects to consider the impact of dynamic learning capability, which is thought to reconfigure governance mechanisms over time in response to evolving market conditions. This conceptual paper proposes a new model to show how continuous joint learning of participant organisations improves project performance. Design/methodology/approach There are two stages of conceptual development. In the first stage, the management literature is analysed to explain the Standard Model of dynamic learning capability that emphasises three learning phases for organisations. This Standard Model is extended to derive a novel Circular Model of dynamic learning capability that shows a new feedback loop between performance and learning. In the second stage, the construction management literature is consulted, adding project lifecycle, stakeholder diversity and three organisational levels to the analysis, to arrive at the Collaborative Model of dynamic learning capability. Findings The Collaborative Model should enable construction organisations to successfully adapt and perform under changing market conditions. The complexity of learning cycles results in capabilities that are imperfectly imitable between organisations, explaining performance heterogeneity on projects. Originality/value The Collaborative Model provides a theoretically substantiated description of project performance, driven by the evolution of procurement systems and governance mechanisms. The Model’s empirical value will be tested in future research.
Resumo:
The potential benefits of shared eHealth records systems are promising for the future of improved healthcare. However, the uptake of such systems is hindered by concerns over the security and privacy of patient information. The use of Information Accountability and so called Accountable-eHealth (AeH) systems has been proposed to balance the privacy concerns of patients with the information needs of healthcare professionals. However, a number of challenges remain before AeH systems can become a reality. Among these is the need to protect the information stored in the usage policies and provenance logs used by AeH systems to define appropriate use of information and hold users accountable for their actions. In this paper, we discuss the privacy and security issues surrounding these accountability mechanisms, define valid access to the information they contain, discuss solutions to protect them, and verify and model an implementation of the access requirements as part of an Information Accountability Framework.
Resumo:
This project examined the role that written specifications play in the building procurement process and the relationship that specifications should have with respect to the use of BIM within the construction industry. A three-part approach was developed to integrate specifications, product libraries and BIM. Typically handled by different disciplines within project teams, these provide the basis for a holistic approach to the development of building descriptions through the design process and into construction.
Resumo:
The Source Monitoring Framework is a promising model of constructive memory, yet fails because it is connectionist and does not allow content tagging. The Dual-Process Signal Detection Model is an improvement because it reduces mnemic qualia to a single memory signal (or degree of belief), but still commits itself to non-discrete representation. By supposing that ‘tagging’ means the assignment of propositional attitudes to aggregates of anemic characteristics informed inductively, then a discrete model becomes plausible. A Bayesian model of source monitoring accounts for the continuous variation of inputs and assignment of prior probabilities to memory content. A modified version of the High-Threshold Dual-Process model is recommended to further source monitoring research.
Resumo:
Cued recall and item recognition are considered the standard episodic memory retrieval tasks. However, only the neural correlates of the latter have been studied in detail with fMRI. Using an event-related fMRI experimental design that permits spoken responses, we tested hypotheses from an auto-associative model of cued recall and item recognition [Chappell, M., & Humphreys, M. S. (1994). An auto-associative neural network for sparse representations: Analysis and application to models of recognition and cued recall. Psychological Review, 101, 103-128]. In brief, the model assumes that cues elicit a network of phonological short term memory (STM) and semantic long term memory (LTM) representations distributed throughout the neocortex as patterns of sparse activations. This information is transferred to the hippocampus which converges upon the item closest to a stored pattern and outputs a response. Word pairs were learned from a study list, with one member of the pair serving as the cue at test. Unstudied words were also intermingled at test in order to provide an analogue of yes/no recognition tasks. Compared to incorrectly rejected studied items (misses) and correctly rejected (CR) unstudied items, correctly recalled items (hits) elicited increased responses in the left hippocampus and neocortical regions including the left inferior prefrontal cortex (LIPC), left mid lateral temporal cortex and inferior parietal cortex, consistent with predictions from the model. This network was very similar to that observed in yes/no recognition studies, supporting proposals that cued recall and item recognition involve common rather than separate mechanisms.
Resumo:
We present a new algorithm to compute the voxel-wise genetic contribution to brain fiber microstructure using diffusion tensor imaging (DTI) in a dataset of 25 monozygotic (MZ) twins and 25 dizygotic (DZ) twin pairs (100 subjects total). First, the structural and DT scans were linearly co-registered. Structural MR scans were nonlinearly mapped via a 3D fluid transformation to a geometrically centered mean template, and the deformation fields were applied to the DTI volumes. After tensor re-orientation to realign them to the anatomy, we computed several scalar and multivariate DT-derived measures including the geodesic anisotropy (GA), the tensor eigenvalues and the full diffusion tensors. A covariance-weighted distance was measured between twins in the Log-Euclidean framework [2], and used as input to a maximum-likelihood based algorithm to compute the contributions from genetics (A), common environmental factors (C) and unique environmental ones (E) to fiber architecture. Quanititative genetic studies can take advantage of the full information in the diffusion tensor, using covariance weighted distances and statistics on the tensor manifold.
Resumo:
In vegetated environments, reliable obstacle detection remains a challenge for state-of-the-art methods, which are usually based on geometrical representations of the environment built from LIDAR and/or visual data. In many cases, in practice field robots could safely traverse through vegetation, thereby avoiding costly detours. However, it is often mistakenly interpreted as an obstacle. Classifying vegetation is insufficient since there might be an obstacle hidden behind or within it. Some Ultra-wide band (UWB) radars can penetrate through vegetation to help distinguish actual obstacles from obstacle-free vegetation. However, these sensors provide noisy and low-accuracy data. Therefore, in this work we address the problem of reliable traversability estimation in vegetation by augmenting LIDAR-based traversability mapping with UWB radar data. A sensor model is learned from experimental data using a support vector machine to convert the radar data into occupancy probabilities. These are then fused with LIDAR-based traversability data. The resulting augmented traversability maps capture the fine resolution of LIDAR-based maps but clear safely traversable foliage from being interpreted as obstacle. We validate the approach experimentally using sensors mounted on two different mobile robots, navigating in two different environments.
Resumo:
The air transport industry is a complex environment facing many challenges while coping with changing global imperatives. International airport passenger facilitation is a part of the socio-technical system where these challenges manifest, impacting businesses in terms of time, cost and quality. This research inductively develops an extensible configurable reference model by capturing and merging the cross-organisational facilitation process from five Australian airports. The reference model can be filtered according to the contextual needs of airport users to inform relevant and accurate business process design. The domain and methodological contributions constitute the first reported application of questionnaire-based configurability to airport processes.