990 resultados para Mid-Atlantic Ridge Rift Valley
Resumo:
Recent investigations of the southern Gulf of California (22°N) on Leg 65 of the Deep Sea Drilling Project (DSDP) allow important comparisons with drilled sections of ocean crust formed at different spreading rates. During Leg 65 the Glomar Challenger drilled seven basement holes at sites forming a transect across the ridge axis near the Tamayo Fracture Zone. An additional site was drilled on the fracture zone itself, where a small magnetic "diapir" was located. Together with the material from Site 474 (drilled during Leg 64) the cores recovered at these sites are representative of the upper basaltic and sedimentary crust formed since the initial opening of the Gulf. The pattern of magmatic accretion at the ridge axis is conditioned by the moderate to high rate of spreading (~6 cm/y.) and comparatively high sedimentation rates that now characterize the Gulf of California. In terms of spreading rate, this region is intermediate between the "superfast" East Pacific Rise axis to the south (up to 17 cm/y.) and the slow-spreading Mid-Atlantic Ridge (2-4 cm/y.) both of which have been extensively studied by dredging and drilling.
Resumo:
Basement rocks were recovered at four sites on Leg 115 along the Reunion hotspot track in the western Indian Ocean. Plate tectonic reconstructions indicate that the drilled structures formed in three different volcanic environments. Sites 706 and 713 from the eastern side of the Saya de Malha Bank and the northern end of the Chagos Bank, respectively, are on a large volcanic platform analogous to Iceland on the Mid-Atlantic Ridge. Lavas at Site 707 on the northwestern side of the Saya de Malha Bank erupted during the early stages of rifting of the Seychelles from India. Basalts from Site 715 were erupted onto an isolated oceanic island that was distant from ocean ridges and continents much as Reunion Island is today. Many of the rocks were examined in thin section and found to be primarily augite-plagioclase basalts with minor olivine and rare opaque oxides. Site 715 is unusual in that it contains a variety of basalts including olivine-rich and aphyric Fe-Ti basalts. At each of the four sites the rocks were grouped into chemical types (units) on the basis of ship- board bulk-rock analyses and at least one thin section from each chemical unit was analyzed by electron microprobe. The plagioclase and augite chemistry reflects the bulk-rock chemistry and, in general, these minerals were in equilibrium with their host magmas at the time the basalts were quenched. Olivine was rarely preserved, but where it is still present it also appears to have crystallized in equilibrium with the host magma. At three of the drill sites plagioclase phenocrysts or megacrysts that crystallized from a primitive magma are also present. The one site (715) that does not contain these primitive plagioclase phenocrysts is also the site that appears to have been influenced the least by ocean- ridge or Deccan-type magmas. Site 715, furthermore, has a mineralogy that is dominated by olivine as compared with the plagioclase-rich lavas of the other sites.