912 resultados para Meyer–Konig and Zeller Operators


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, an efficient genetic algorithm (GA) is presented to solve the problem of multistage and coordinated transmission expansion planning. This is a mixed integer nonlinear programming problem, difficult for systems of medium and large size and high complexity. The GA presented has a set of specialized genetic operators and an efficient form of generation of the initial population that finds high quality suboptimal topologies for large size and high complexity systems. In these systems, multistage and coordinated planning present a lower investment than static planning. Tests results are shown in one medium complexity system and one large size high complexity system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the literature there are several proposals of fuzzi cation of lattices and ideals concepts. Chon in (Korean J. Math 17 (2009), No. 4, 361-374), using the notion of fuzzy order relation de ned by Zadeh, introduced a new notion of fuzzy lattice and studied the level sets of fuzzy lattices, but did not de ne a notion of fuzzy ideals for this type of fuzzy lattice. In this thesis, using the fuzzy lattices de ned by Chon, we de ne fuzzy homomorphism between fuzzy lattices, the operations of product, collapsed sum, lifting, opposite, interval and intuitionistic on bounded fuzzy lattices. They are conceived as extensions of their analogous operations on the classical theory by using this de nition of fuzzy lattices and introduce new results from these operators. In addition, we de ne ideals and lters of fuzzy lattices and concepts in the same way as in their characterization in terms of level and support sets. One of the results found here is the connection among ideals, supports and level sets. The reader will also nd the de nition of some kinds of ideals and lters as well as some results with respect to the intersection among their families. Moreover, we introduce a new notion of fuzzy ideals and fuzzy lters for fuzzy lattices de ned by Chon. We de ne types of fuzzy ideals and fuzzy lters that generalize usual types of ideals and lters of lattices, such as principal ideals, proper ideals, prime ideals and maximal ideals. The main idea is verifying that analogous properties in the classical theory on lattices are maintained in this new theory of fuzzy ideals. We also de ne, a fuzzy homomorphism h from fuzzy lattices L and M and prove some results involving fuzzy homomorphism and fuzzy ideals as if h is a fuzzy monomorphism and the fuzzy image of a fuzzy set ~h(I) is a fuzzy ideal, then I is a fuzzy ideal. Similarly, we prove for proper, prime and maximal fuzzy ideals. Finally, we prove that h is a fuzzy homomorphism from fuzzy lattices L into M if the inverse image of all principal fuzzy ideals of M is a fuzzy ideal of L. Lastly, we introduce the notion of -ideals and - lters of fuzzy lattices and characterize it by using its support and its level set. Moreover, we prove some similar properties in the classical theory of - ideals and - lters, such as, the class of -ideals and - lters are closed under intersection. We also de ne fuzzy -ideals of fuzzy lattices, some properties analogous to the classical theory are also proved and characterize a fuzzy -ideal on operation of product between bounded fuzzy lattices L and M and prove some results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for computing the propagator for three-dimensional quadratic gravity with a gravitational Chern-Simons term, based on an extension of the three-dimensional Barnes-Rivers operators, is proposed. A systematic study of the tree-level unitarity of this theory is developed and its agreement with Newton's law is investigated by computing the effective nonrelativistic potential. (C) 2000 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective chiral Lagrangians involving constituent quarks, Goldstone bosons and long-distance gluons are believed to describe the strong interactions in an intermediate energy region between the confinement scale and the chiral symmetry breaking scale. Baryons and mesons in such a description are bound states of constituent quarks. We discuss the combined use of the techniques of effective chiral field theory and of the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between two nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of nuclear matter using this formalism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of a mod(N)-invariant operator basis, s-parametrized phase-space functions associated with bounded operators in a finite-dimensional Hilbert space are introduced in the context of the extended Cahill-Glauber formalism, and their properties are discussed in details. The discrete Glauber-Sudarshan, Wigner, and Husimi functions emerge from this formalism as specific cases of s-parametrized phase-space functions where, in particular, a hierarchical process among them is promptly established. In addition, a phase-space description of quantum tomography and quantum teleportation is presented and new results are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We make a careful study about the nonrelativistic reduction of one-meson-exchange models for the nonmesonic weak hypernuclear decay. Starting from a widely accepted effective coupling Hamiltonian involving the exchange of the complete pseudoscalar and vector meson octets (pi, eta, K, rho, omega, K*), the strangeness-changing weak LambdaN --> NN transition potential is derived, including two effects that have been systematically omitted in the literature, or, at best, only partly considered. These are the kinematical effects due to the difference between the lambda and nucleon masses, and the first-order nonlocality corrections, i.e., those involving up to first-order differential operators. Our analysis clearly shows that the main kinematical effect on the local contributions is the reduction of the effective pion mass. The kinematical effect on the nonlocal contributions is more complicated, since it activates several new terms that would otherwise remain dormant. Numerical results for C-12(Lambda) and He-5(Lambda) are presented and they show that the combined kinematical plus nonlocal corrections have an appreciable influence on the partial decay rates. However, this is somewhat diminished in the main decay observables: the total nonmesonic rate, Gamma(nm), the neutron-to-proton branching ratio, Gamma(n)/Gamma(p), and the asymmetry parameter, a(Lambda). The latter two still cannot be reconciled with the available experimental data. The existing theoretical predictions for the sign of a(Lambda) in He-5(Lambda) are confirmed. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, an approach to discrete quantum phase spaces which comprehends all the main quasiprobability distributions known has been developed. It is the research that started with the pioneering work of Galetti and Piza, where the idea of operator bases constructed of discrete Fourier transforms of unitary displacement operators was first introduced. Subsequently, the discrete coherent states were introduced, and finally, the s-parametrized distributions, that include the Wigner, Husimi, and Glauber-Sudarshan distribution functions as particular cases. In the present work, we adapt its formulation to encompass some additional discrete symmetries, achieving an elegant yet physically sound formalism.