951 resultados para Methods validation
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
Background: The inference of gene regulatory networks (GRNs) from large-scale expression profiles is one of the most challenging problems of Systems Biology nowadays. Many techniques and models have been proposed for this task. However, it is not generally possible to recover the original topology with great accuracy, mainly due to the short time series data in face of the high complexity of the networks and the intrinsic noise of the expression measurements. In order to improve the accuracy of GRNs inference methods based on entropy (mutual information), a new criterion function is here proposed. Results: In this paper we introduce the use of generalized entropy proposed by Tsallis, for the inference of GRNs from time series expression profiles. The inference process is based on a feature selection approach and the conditional entropy is applied as criterion function. In order to assess the proposed methodology, the algorithm is applied to recover the network topology from temporal expressions generated by an artificial gene network (AGN) model as well as from the DREAM challenge. The adopted AGN is based on theoretical models of complex networks and its gene transference function is obtained from random drawing on the set of possible Boolean functions, thus creating its dynamics. On the other hand, DREAM time series data presents variation of network size and its topologies are based on real networks. The dynamics are generated by continuous differential equations with noise and perturbation. By adopting both data sources, it is possible to estimate the average quality of the inference with respect to different network topologies, transfer functions and network sizes. Conclusions: A remarkable improvement of accuracy was observed in the experimental results by reducing the number of false connections in the inferred topology by the non-Shannon entropy. The obtained best free parameter of the Tsallis entropy was on average in the range 2.5 <= q <= 3.5 (hence, subextensive entropy), which opens new perspectives for GRNs inference methods based on information theory and for investigation of the nonextensivity of such networks. The inference algorithm and criterion function proposed here were implemented and included in the DimReduction software, which is freely available at http://sourceforge.net/projects/dimreduction and http://code.google.com/p/dimreduction/.
Resumo:
Based on solvation studies of polymers, the sum (1: 1) of the electron acceptor (AN) and electron donor (DN) values of solvents has been proposed as an alternative polarity scale. To test this, the electron paramagnetic resonance isotropic hyperfine splitting constant, a parameter known to be dependent on the polarity/proticity of the medium, was correlated with the (AN+DN) term using three paramagnetic probes. The linear regression coefficient calculated for 15 different solvents was approximately 0.9, quite similar to those of other well-known polarity parameters, attesting to the validity of the (AN+DN) term as a novel ""two-parameter"" solvent polarity scale.
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The application of laser induced breakdown spectrometry (LIBS) aiming the direct analysis of plant materials is a great challenge that still needs efforts for its development and validation. In this way, a series of experimental approaches has been carried out in order to show that LIBS can be used as an alternative method to wet acid digestions based methods for analysis of agricultural and environmental samples. The large amount of information provided by LIBS spectra for these complex samples increases the difficulties for selecting the most appropriated wavelengths for each analyte. Some applications have suggested that improvements in both accuracy and precision can be achieved by the application of multivariate calibration in LIBS data when compared to the univariate regression developed with line emission intensities. In the present work, the performance of univariate and multivariate calibration, based on partial least squares regression (PLSR), was compared for analysis of pellets of plant materials made from an appropriate mixture of cryogenically ground samples with cellulose as the binding agent. The development of a specific PLSR model for each analyte and the selection of spectral regions containing only lines of the analyte of interest were the best conditions for the analysis. In this particular application, these models showed a similar performance. but PLSR seemed to be more robust due to a lower occurrence of outliers in comparison to the univariate method. Data suggests that efforts dealing with sample presentation and fitness of standards for LIBS analysis must be done in order to fulfill the boundary conditions for matrix independent development and validation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Objective: We carry out a systematic assessment on a suite of kernel-based learning machines while coping with the task of epilepsy diagnosis through automatic electroencephalogram (EEG) signal classification. Methods and materials: The kernel machines investigated include the standard support vector machine (SVM), the least squares SVM, the Lagrangian SVM, the smooth SVM, the proximal SVM, and the relevance vector machine. An extensive series of experiments was conducted on publicly available data, whose clinical EEG recordings were obtained from five normal subjects and five epileptic patients. The performance levels delivered by the different kernel machines are contrasted in terms of the criteria of predictive accuracy, sensitivity to the kernel function/parameter value, and sensitivity to the type of features extracted from the signal. For this purpose, 26 values for the kernel parameter (radius) of two well-known kernel functions (namely. Gaussian and exponential radial basis functions) were considered as well as 21 types of features extracted from the EEG signal, including statistical values derived from the discrete wavelet transform, Lyapunov exponents, and combinations thereof. Results: We first quantitatively assess the impact of the choice of the wavelet basis on the quality of the features extracted. Four wavelet basis functions were considered in this study. Then, we provide the average accuracy (i.e., cross-validation error) values delivered by 252 kernel machine configurations; in particular, 40%/35% of the best-calibrated models of the standard and least squares SVMs reached 100% accuracy rate for the two kernel functions considered. Moreover, we show the sensitivity profiles exhibited by a large sample of the configurations whereby one can visually inspect their levels of sensitiveness to the type of feature and to the kernel function/parameter value. Conclusions: Overall, the results evidence that all kernel machines are competitive in terms of accuracy, with the standard and least squares SVMs prevailing more consistently. Moreover, the choice of the kernel function and parameter value as well as the choice of the feature extractor are critical decisions to be taken, albeit the choice of the wavelet family seems not to be so relevant. Also, the statistical values calculated over the Lyapunov exponents were good sources of signal representation, but not as informative as their wavelet counterparts. Finally, a typical sensitivity profile has emerged among all types of machines, involving some regions of stability separated by zones of sharp variation, with some kernel parameter values clearly associated with better accuracy rates (zones of optimality). (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The aim of this paper is to highlight some of the methods of imagetic information representation, reviewing the literature of the area and proposing a model of methodology adapted to Brazilian museums. An elaboration of a methodology of imagetic information representation is developed based on Brazilian characteristics of information treatment in order to adapt it to museums. Finally, spreadsheets that show this methodology are presented.
Resumo:
The objective of this study was to validate the Piper Fatigue Scale-Revised (PFS-R) for use in Brazilian culture. Translation of the PFS-R into Portuguese and validity and reliability tests were performed. Convenience samples in Brazil we as follows: 584 cancer patients (mean age 57 +/- 13 years; 51.3% female); 184 caregivers (mean age 50 +/- 12.7 years; 65.8% female); and 189 undergraduate nursing students (mean age 21.6 +/- 2.8 years; 96.2% female); Instruments used were as follows: Brazilian PFS, Beck Depression Inventory (BDI), and Karnofsky Performance Scale (KPS). The 22 items of the Brazilian PFS loaded well (factor loading > 0.35) on three dimensions identified by factor analysis (behavioral, affective, and sensorial-psychological). These dimensions explained 65% of the variance. Internal consistency reliability was very good (Cronbach`s alpha ranged from 0.841 to 0.943 for the total scale and its dimensions). Cancer patients and their caregivers completed the Brazilian PFS twice for test-retest reliability and results showed good stability (Pearson`s r a parts per thousand yenaEuro parts per thousand 0,60, p < 0,001). Correlations among the Brazilian PFS and other scales were significant, in hypothesized directions, and mostly moderate contributing to divergent (Brazilian PFS x KPS) and convergent validity (Brazilian PFS x BDI). Mild, moderate, and severe fatigue in patients were reported by 73 (12.5%), 167 (28.6%), and 83 (14.2%), respectively. Surprisingly, students had the highest mean total fatigue scores; no significant differences were observed between patients and caregivers showing poor discriminant validity. While the Brazilian PFS is a reliable and valid instrument to measure fatigue in Brazilian cancer patients, further work is needed to evaluate the discriminant validity of the scale in Brazil.
Resumo:
ARTIOLI, G. G., B. GUALANO, E. FRANCHINI, F. B. SCAGLIUSI, M. TAKESIAN, M. FUCHS, and A. H. LANCHA. Prevalence, Magnitude, and Methods of Rapid Weight Loss among Judo Competitors. Med. Sci. Sports Exerc., Vol. 42, No. 3, pp. 436-442, 2010. Purpose: To identify the prevalence, magnitude, and methods of rapid weight loss among judo competitors. Methods: Athletes (607 males and 215 females; age = 19.3 +/- 5.3 yr, weight = 70 +/- 7.5 kg, height = 170.6 +/- 9.8 cm) completed a previously validated questionnaire developed to evaluate rapid weight loss in judo athletes, which provides a score. The higher the score obtained, the more aggressive the weight loss behaviors. Data were analyzed using descriptive statistics and frequency analyses. Mean scores obtained in the questionnaire were used to compare specific groups of athletes using, when appropriate, Mann-Whitney U-test or general linear model one-way ANOVA followed by Tamhane post hoc test. Results: Eighty-six percent of athletes reported that have already lost weight to compete. When heavyweights are excluded, this percentage rises to 89%. Most athletes reported reductions of up to 5% of body weight (mean +/- SD: 2.5 +/- 2.3%). The most weight ever lost was 2%-5%, whereas a great part of athletes reported reductions of 5%-10% (mean +/- SD: 6 +/- 4%). The number of reductions underwent in a season was 3 +/- 5. The reductions usually occurred within 7 +/- 7 d. Athletes began cutting weight at 12.6 +/- 6.1 yr. No significant differences were found in the score obtained by male versus female athletes as well as by athletes from different weight classes. Elite athletes scored significantly higher in the questionnaire than nonelite. Athletes who began cutting weight earlier also scored higher than those who began later. Conclusions: Rapid weight loss is highly prevalent in judo competitors. The level of aggressiveness in weight management behaviors seems to not be influenced by the gender or by the weight class, but it seems to be influenced by competitive level and by the age at which athletes began cutting weight.
Resumo:
The aim of the present study was to compare and correlate training impulse (TRIMP) estimates proposed by Banister (TRIMP(Banister)), Stagno (TRIMP(Stagno)) and Manzi (TRIMP(Manzi)). The subjects were submitted to an incremental test on cycle ergometer with heart rate and blood lactate concentration measurements. In the second occasion, they performed 30 min. of exercise at the intensity corresponding to maximal lactate steady state, and TRIMP(Banister), TRIMP(Stagno) and TRIMP(Manzi) were calculated. The mean values of TRIMP(Banister) (56.5 +/- 8.2 u.a.) and TRIMP(Stagno) (51.2 +/- 12.4 u.a.) were not different (P > 0.05) and were highly correlated (r = 0.90). Besides this, they presented a good agreement level, which means low bias and relatively narrow limits of agreement. On the other hand, despite highly correlated (r = 0.93), TRIMP(Stagno) and TRIMP(Manzi) (73.4 +/- 17.6 u.a.) were different (P < 0.05), with low agreement level. The TRIMP(Banister) e TRIMP(Manzi) estimates were not different (P = 0.06) and were highly correlated (r = 0.82), but showed low agreement level. Thus, we concluded that the investigated TRIMP methods are not equivalent. In practical terms, it seems prudent monitor the training process assuming only one of the estimates.
Resumo:
This study tested the concurrent and construct validity of a newly developed OMNI-Kayak Scale, testing 8 male kayakers who performed a flatwater load-incremented ""shuttle"" test over a 500-m course and 3 estimation-production trials over a 1,000-m course. Velocity, blood lactate concentration, heart rate, and rating of perceived exertion (RPE), using the OMNI-Kayak RPE Scale and the Borg 6-20 Scale were recorded. OMNI-Kayak Scale RPE was highly correlated with velocity, the Borg 6-20 Scale RPE, blood lactate, and heart rate for both load-incremented test (rs=.87-.96), and estimation trials (rs=.75-.90). There were no significant differences among velocities, heart rate and blood lactate concentration between estimation and production trials. The OMNI-Kayak RPE Scale showed concurrent and construct validity in assessing perception of effort in flatwater kayaking and is a valid tool for self-regulation of exercise intensity.
Resumo:
Fourier transform near infrared (FT-NIR) spectroscopy was evaluated as an analytical too[ for monitoring residual Lignin, kappa number and hexenuronic acids (HexA) content in kraft pulps of Eucalyptus globulus. Sets of pulp samples were prepared under different cooking conditions to obtain a wide range of compound concentrations that were characterised by conventional wet chemistry analytical methods. The sample group was also analysed using FT-NIR spectroscopy in order to establish prediction models for the pulp characteristics. Several models were applied to correlate chemical composition in samples with the NIR spectral data by means of PCR or PLS algorithms. Calibration curves were built by using all the spectral data or selected regions. Best calibration models for the quantification of lignin, kappa and HexA were proposed presenting R-2 values of 0.99. Calibration models were used to predict pulp titers of 20 external samples in a validation set. The lignin concentration and kappa number in the range of 1.4-18% and 8-62, respectively, were predicted fairly accurately (standard error of prediction, SEP 1.1% for lignin and 2.9 for kappa). The HexA concentration (range of 5-71 mmol kg(-1) pulp) was more difficult to predict and the SEP was 7.0 mmol kg(-1) pulp in a model of HexA quantified by an ultraviolet (UV) technique and 6.1 mmol kg(-1) pulp in a model of HexA quantified by anion-exchange chromatography (AEC). Even in wet chemical procedures used for HexA determination, there is no good agreement between methods as demonstrated by the UV and AEC methods described in the present work. NIR spectroscopy did provide a rapid estimate of HexA content in kraft pulps prepared in routine cooking experiments.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.
Resumo:
Understanding the product`s `end-of-life` is important to reduce the environmental impact of the products` final disposal. When the initial stages of product development consider end-of-life aspects, which can be established by ecodesign (a proactive approach of environmental management that aims to reduce the total environmental impact of products), it becomes easier to close the loop of materials. The `end-of-life` ecodesign methods generally include more than one `end-of-life` strategy. Since product complexity varies substantially, some components, systems or sub-systems are easier to be recycled, reused or remanufactured than others. Remanufacture is an effective way to maintain products in a closed-loop, reducing both environmental impacts and costs of the manufacturing processes. This paper presents some ecodesign methods focused on the integration of different `end-of-life` strategies, with special attention to remanufacturing, given its increasing importance in the international scenario to reduce the life cycle impacts of products. (C) 2009 Elsevier Ltd. All rights reserved.