992 resultados para Metabolic Networks
Resumo:
Wheat is at peak quality soon after harvest. Subsequently, diverse biota use wheat as a resource in storage, including insects and mycotoxin-producing fungi. Transportation networks for stored grain are crucial to food security and provide a model system for an analysis of the population structure, evolution, and dispersal of biota in networks. We evaluated the structure of rail networks for grain transport in the United States and Eastern Australia to identify the shortest paths for the anthropogenic dispersal of pests and mycotoxins, as well as the major sources, sinks, and bridges for movement. We found important differences in the risk profile in these two countries and identified priority control points for sampling, detection, and management. An understanding of these key locations and roles within the network is a new type of basic research result in postharvest science and will provide insights for the integrated pest management of high-risk subpopulations, such as pesticide-resistant insect pests.
Resumo:
Increased consumption of dark-coloured fruits and vegetables may mitigate metabolic syndrome. This study has determined the changes in metabolic parameters, and in cardiovascular and liver structure and function, following chronic administration of either cyanidin 3-glucoside (CG) or Queen Garnet plum juice (QG) containing cyanidin glycosides to rats fed either a corn starch (C) or a high-carbohydrate, high-fat (H) diet. Eight to nine-week-old male Wistar rats were randomly divided into six groups for 16-week feeding with C, C with CG or QG, H or H with CG or QG. C or H were supplemented with CG or QG at a dose of ∼8 mg/kg/day cyanidin glycosides from week 8 to 16. H rats developed signs of metabolic syndrome including visceral adiposity, impaired glucose tolerance, hypertension, cardiovascular remodelling, increased collagen depots in left ventricle, non-alcoholic fatty liver disease, increased plasma liver enzymes and increased inflammatory cell infiltration in the heart and liver. Both CG and QG reversed these cardiovascular, liver and metabolic signs. However, no intact anthocyanins or common methylated/conjugated metabolites could be detected in the plasma samples and plasma hippuric acid concentrations were unchanged. Our results suggest CG is the most likely mediator of the responses to QG but that further investigation of the pharmacokinetics of oral CG in rats is required.
Resumo:
Transgenic engineering of plants is important in both basic and applied research. However, the expression of a transgene can dwindle over time as the plant's small (s)RNA-guided silencing pathways shut it down. The silencing pathways have evolved as antiviral defence mechanisms, and viruses have co-evolved viral silencing-suppressor proteins (VSPs) to block them. Therefore, VSPs have been routinely used alongside desired transgene constructs to enhance their expression in transient assays. However, constitutive, stable expression of a VSP in a plant usually causes pronounced developmental abnormalities, as their actions interfere with endogenous microRNA-regulated processes, and has largely precluded the use of VSPs as an aid to stable transgene expression. In an attempt to avoid the deleterious effects but obtain the enhancing effect, a number of different VSPs were expressed exclusively in the seeds of Arabidopsis thaliana alongside a three-step transgenic pathway for the synthesis of arachidonic acid (AA), an ω-6 long chain polyunsaturated fatty acid. Results from independent transgenic events, maintained for four generations, showed that the VSP-AA-transformed plants were developmentally normal, apart from minor phenotypes at the cotyledon stage, and could produce 40% more AA than plants transformed with the AA transgene cassette alone. Intriguingly, a geminivirus VSP, V2, was constitutively expressed without causing developmental defects, as it acts on the siRNA amplification step that is not part of the miRNA pathway, and gave strong transgene enhancement. These results demonstrate that VSP expression can be used to protect and enhance stable transgene performance and has significant biotechnological application.
Resumo:
Research on the internationalisation of small and medium-sized enterprises (SMEs) has received increasing attention in recent years due to the important role they play in today’s economic environment. Internationalisation prompting, or awareness, is an already recognised phase of the innovation-related stages model (I-model). This phase of awareness is closely related to the international exposure that a firm may experience during the occasion when it realises its competitors are already internationalising. Although the literature has discussed the various forms in which international exposure may happen, there has been limited attention given to the extent of its effect on the internationalisation of clustered SMEs that behave according to the I-Model. This study will assess the applicability of the I-Model in a dynamic, competitive and co-operative setting of an industrial cluster. It also evaluates the impact (if any) of international exposure derived from networks and the mimetic pressure that these firms may experience due to their embeddedness in an industrial cluster. Results from this study will indicate the effectiveness of the improved adapted model that will provide a richer insight for both academic researchers and policy makers.
Resumo:
Wireless network access is gaining increased heterogeneity in terms of the types of IP capable access technologies. The access network heterogeneity is an outcome of incremental and evolutionary approach of building new infrastructure. The recent success of multi-radio terminals drives both building a new infrastructure and implicit deployment of heterogeneous access networks. Typically there is no economical reason to replace the existing infrastructure when building a new one. The gradual migration phase usually takes several years. IP-based mobility across different access networks may involve both horizontal and vertical handovers. Depending on the networking environment, the mobile terminal may be attached to the network through multiple access technologies. Consequently, the terminal may send and receive packets through multiple networks simultaneously. This dissertation addresses the introduction of IP Mobility paradigm into the existing mobile operator network infrastructure that have not originally been designed for multi-access and IP Mobility. We propose a model for the future wireless networking and roaming architecture that does not require revolutionary technology changes and can be deployed without unnecessary complexity. The model proposes a clear separation of operator roles: (i) access operator, (ii) service operator, and (iii) inter-connection and roaming provider. The separation allows each type of an operator to have their own development path and business models without artificial bindings with each other. We also propose minimum requirements for the new model. We present the state of the art of IP Mobility. We also present results of standardization efforts in IP-based wireless architectures. Finally, we present experimentation results of IP-level mobility in various wireless operator deployments.
Resumo:
Wireless technologies are continuously evolving. Second generation cellular networks have gained worldwide acceptance. Wireless LANs are commonly deployed in corporations or university campuses, and their diffusion in public hotspots is growing. Third generation cellular systems are yet to affirm everywhere; still, there is an impressive amount of research ongoing for deploying beyond 3G systems. These new wireless technologies combine the characteristics of WLAN based and cellular networks to provide increased bandwidth. The common direction where all the efforts in wireless technologies are headed is towards an IP-based communication. Telephony services have been the killer application for cellular systems; their evolution to packet-switched networks is a natural path. Effective IP telephony signaling protocols, such as the Session Initiation Protocol (SIP) and the H 323 protocol are needed to establish IP-based telephony sessions. However, IP telephony is just one service example of IP-based communication. IP-based multimedia sessions are expected to become popular and offer a wider range of communication capabilities than pure telephony. In order to conjoin the advances of the future wireless technologies with the potential of IP-based multimedia communication, the next step would be to obtain ubiquitous communication capabilities. According to this vision, people must be able to communicate also when no support from an infrastructured network is available, needed or desired. In order to achieve ubiquitous communication, end devices must integrate all the capabilities necessary for IP-based distributed and decentralized communication. Such capabilities are currently missing. For example, it is not possible to utilize native IP telephony signaling protocols in a totally decentralized way. This dissertation presents a solution for deploying the SIP protocol in a decentralized fashion without support of infrastructure servers. The proposed solution is mainly designed to fit the needs of decentralized mobile environments, and can be applied to small scale ad-hoc networks or also bigger networks with hundreds of nodes. A framework allowing discovery of SIP users in ad-hoc networks and the establishment of SIP sessions among them, in a fully distributed and secure way, is described and evaluated. Security support allows ad-hoc users to authenticate the sender of a message, and to verify the integrity of a received message. The distributed session management framework has been extended in order to achieve interoperability with the Internet, and the native Internet applications. With limited extensions to the SIP protocol, we have designed and experimentally validated a SIP gateway allowing SIP signaling between ad-hoc networks with private addressing space and native SIP applications in the Internet. The design is completed by an application level relay that permits instant messaging sessions to be established in heterogeneous environments. The resulting framework constitutes a flexible and effective approach for the pervasive deployment of real time applications.
Resumo:
The metabolism of an organism consists of a network of biochemical reactions that transform small molecules, or metabolites, into others in order to produce energy and building blocks for essential macromolecules. The goal of metabolic flux analysis is to uncover the rates, or the fluxes, of those biochemical reactions. In a steady state, the sum of the fluxes that produce an internal metabolite is equal to the sum of the fluxes that consume the same molecule. Thus the steady state imposes linear balance constraints to the fluxes. In general, the balance constraints imposed by the steady state are not sufficient to uncover all the fluxes of a metabolic network. The fluxes through cycles and alternative pathways between the same source and target metabolites remain unknown. More information about the fluxes can be obtained from isotopic labelling experiments, where a cell population is fed with labelled nutrients, such as glucose that contains 13C atoms. Labels are then transferred by biochemical reactions to other metabolites. The relative abundances of different labelling patterns in internal metabolites depend on the fluxes of pathways producing them. Thus, the relative abundances of different labelling patterns contain information about the fluxes that cannot be uncovered from the balance constraints derived from the steady state. The field of research that estimates the fluxes utilizing the measured constraints to the relative abundances of different labelling patterns induced by 13C labelled nutrients is called 13C metabolic flux analysis. There exist two approaches of 13C metabolic flux analysis. In the optimization approach, a non-linear optimization task, where candidate fluxes are iteratively generated until they fit to the measured abundances of different labelling patterns, is constructed. In the direct approach, linear balance constraints given by the steady state are augmented with linear constraints derived from the abundances of different labelling patterns of metabolites. Thus, mathematically involved non-linear optimization methods that can get stuck to the local optima can be avoided. On the other hand, the direct approach may require more measurement data than the optimization approach to obtain the same flux information. Furthermore, the optimization framework can easily be applied regardless of the labelling measurement technology and with all network topologies. In this thesis we present a formal computational framework for direct 13C metabolic flux analysis. The aim of our study is to construct as many linear constraints to the fluxes from the 13C labelling measurements using only computational methods that avoid non-linear techniques and are independent from the type of measurement data, the labelling of external nutrients and the topology of the metabolic network. The presented framework is the first representative of the direct approach for 13C metabolic flux analysis that is free from restricting assumptions made about these parameters.In our framework, measurement data is first propagated from the measured metabolites to other metabolites. The propagation is facilitated by the flow analysis of metabolite fragments in the network. Then new linear constraints to the fluxes are derived from the propagated data by applying the techniques of linear algebra.Based on the results of the fragment flow analysis, we also present an experiment planning method that selects sets of metabolites whose relative abundances of different labelling patterns are most useful for 13C metabolic flux analysis. Furthermore, we give computational tools to process raw 13C labelling data produced by tandem mass spectrometry to a form suitable for 13C metabolic flux analysis.
Resumo:
The TCP protocol is used by most Internet applications today, including the recent mobile wireless terminals that use TCP for their World-Wide Web, E-mail and other traffic. The recent wireless network technologies, such as GPRS, are known to cause delay spikes in packet transfer. This causes unnecessary TCP retransmission timeouts. This dissertation proposes a mechanism, Forward RTO-Recovery (F-RTO) for detecting the unnecessary TCP retransmission timeouts and thus allow TCP to take appropriate follow-up actions. We analyze a Linux F-RTO implementation in various network scenarios and investigate different alternatives to the basic algorithm. The second part of this dissertation is focused on quickly adapting the TCP's transmission rate when the underlying link characteristics change suddenly. This can happen, for example, due to vertical hand-offs between GPRS and WLAN wireless technologies. We investigate the Quick-Start algorithm that, in collaboration with the network routers, aims to quickly probe the available bandwidth on a network path, and allow TCP's congestion control algorithms to use that information. By extensive simulations we study the different router algorithms and parameters for Quick-Start, and discuss the challenges Quick-Start faces in the current Internet. We also study the performance of Quick-Start when applied to vertical hand-offs between different wireless link technologies.
Resumo:
This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs.
Resumo:
The mobile phone has, as a device, taken the world by storm in the past decade; from only 136 million phones globally in 1996, it is now estimated that by the end of 2008 roughly half of the worlds population will own a mobile phone. Over the years, the capabilities of the phones as well as the networks have increased tremendously, reaching the point where the devices are better called miniature computers rather than simply mobile phones. The mobile industry is currently undertaking several initiatives of developing new generations of mobile network technologies; technologies that to a large extent focus at offering ever-increasing data rates. This thesis seeks to answer the question of whether the future mobile networks in development and the future mobile services are in sync; taking a forward-looking timeframe of five to eight years into the future, will there be services that will need the high-performance new networks being planned? The question is seen to be especially pertinent in light of slower-than-expected takeoff of 3G data services. Current and future mobile services are analyzed from two viewpoints; first, looking at the gradual, evolutionary development of the services and second, through seeking to identify potential revolutionary new mobile services. With information on both current and future mobile networks as well as services, a network capability - service requirements mapping is performed to identify which services will work in which networks. Based on the analysis, it is far from certain whether the new mobile networks, especially those planned for deployment after HSPA, will be needed as soon as they are being currently roadmapped. The true service-based demand for the "beyond HSPA" technologies may be many years into the future - or, indeed, may never materialize thanks to the increasing deployment of local area wireless broadband technologies.