967 resultados para Measuring instruments.
Resumo:
The importance of design to company and national performance has been widely discussed, with a number of studies investigating the value or impact of design on performance. However, none of these studies has measured design investment as an input against which performance can be compared. As yet, there is no established way in which design investment might be measured. Without such a method, we cannot develop a reliable picture, akin to that for R&D spending, on the impact of design spending on company performance. This paper presents a conceptual framework for the measurement of design investment and applies this framework in a survey of UK firms. The framework describes design as being part of the creation and commercialization of new products and services. The survey highlights some surprising patterns of design spend in the reported sample and demonstrates the viability of the underpinning framework. A revised framework is proposed that situates design investment in the context of R&D. The model has implications for policy makers trying to understand the role and scale of design in the private sector, for managers wishing to optimize their design investments and for academics seeking to measure the value of design. © 2013 Published by Elsevier B.V.
Resumo:
An accurate description of sound propagation in a duct is important to obtain the sound power radiating from a source in both near and far fields. A technique has been developed and applied to decompose higher-order modes of sound emitted into a duct. Traditional experiments and theory based on two-sensor methods are limited to the plane-wave contribution to the sound field at low frequency. Due to the increase in independent measurements required, a computational method has been developed to simulate sensitivities of real measurements (e.g., noise) and optimize the set-up. An experimental rig has been constructed to decompose the first two modes using six independent measurements from surface, flush-mounted microphones. Experiments were initially performed using a loudspeaker as the source for validation. Subsequently, the sound emitted by a mixed-flow fan has been investigated and compared to measurements made in accordance with the internationally standardized in-duct fan measurement method. This method utilizes large anechoic terminations and a procedure involving averaging over measurements in space and time to account for the contribution from higher-order modes. The new method does not require either of these added complications and gives detail about the underlying modal content of the emitted sound.
Resumo:
Detecting receptor dimerisation and other forms of clustering on the cell surface depends on methods capable of determining protein-protein separations with high resolution in the ∼10-50 nm range. However, this distance range poses a significant challenge because it is too large for fluorescence resonance energy transfer and contains distances too small for all other techniques capable of high-resolution in cells. Here we have adapted the technique of fluorophore localisation imaging with photobleaching to measure inter-receptor separations in the cellular environment. Using the epidermal growth factor receptor, a key cancer target molecule, we demonstrate ∼10 nm resolution while continuously covering the range of ∼10-80 nm. By labelling the receptor on cells expressing low receptor numbers with a fluorescent antagonist we have found inter-receptor separations all the way up from 8 nm to 59 nm. Our data are consistent with epidermal growth factor receptors being able to form homo-polymers of at least 10 receptors in the absence of activating ligands. © 2013 Needham et al.
Resumo:
A critical element for the successful growth of GaN device layers on Si is accurate control of the AlGaN buffer layers used to manage strain. Here we present a method for measuring the composition of the AlGaN buffer layers in device structures which makes use of a one-dimensional x-ray detector to provide efficient measurement of a reciprocal space map which covers the full compositional range from AlN to GaN. Combining this with a suitable x-ray reflection with low strain sensitivity it is possible to accurately determine the Al fraction of the buffer layers independent of their relaxation state. © 2013 IOP Publishing Ltd.
Resumo:
The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially develop indentation techniques for in vivo diagnostics to identify women who are at risk for premature cervical remodeling and thus preterm birth, we developed a spherical indentation technique to measure the time-dependent material properties of human cervical tissue taken from patients undergoing hysterectomy. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report compressive viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens. The material parameters reported here for human cervical tissue can be used to model the compressive time-dependent behavior of the tissue within a small strain regime of 25%.
Resumo:
Accurately measuring the electronic properties of nanowires is a crucial step in the development of novel semiconductor nanowire-based devices. With this in mind, optical pump-terahertz probe (OPTP) spectroscopy is ideally suited to studies of nanowires: it provides non-contact measurement of carrier transport and dynamics at room temperature. OPTP spectroscopy has been used to assess key electrical properties, including carrier lifetime and carrier mobility, of GaAs, InAs and InP nanowires. The measurements revealed that InAs nanowires exhibited the highest mobilities and InP nanowires exhibited the lowest surface recombination velocity. © 2013 Copyright SPIE.
Resumo:
Several assay methods were screened for viability assessment in cyanobacteria using Microcystis aeruginosa FACHB 905. Compared with fluorescent diacetate (FDA), Evan's Blue and autofluorescence, the 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide (MTT) assay, which was based on the ability of viable cells to reduce MTT to formazan, was found to be reliable and was selected for further study. MTT concentration, incubation time and temperature were optimized for M. aeruginosa. Improvements to the sensitivity and reproducibility of the MTT assay included performing it in the dark to reduce the effects of formazan light sensitivity when extracted in DMSO. Another improvement involved collecting viability data by cell by counting rather than colourimetrically, which was concluded from the fact that oxidoreductase activity, responsible for MTT reduction, would elevate or decrease under stress conditions. Half-life of oxidoreductase in dead cell was calculated to be 3 h. The MTT assay was also found to be applicable to other cyanobacteria and diatoms, including field samples, but not for algae belonging to Chlorophyta, Euglenophyta, Pyrrophyta or Chrysophyta. Based on the above results, we proposed an optimized procedure for the MTT method on Microcystis strains. The use of this assay may be of importance to better understand the dynamics of bloom and the fate of Microcystis under natural or disturbed conditions.
Resumo:
An improved peak power method for measuring frequency responses of photodetectors in a self-heterodyne system consisting of a distributed Bragg reflector laser is proposed. The time-resolved spectrum technique is used to measure the peak power of the beat signal and the intrinsic linewidth of heat signal for calibration. The experimental results show that the impact of the thermal-induced frequency drift, which is the main reason for producing an error in measurement by conventional peak power method and spectrum power method, can be removed.
Resumo:
Circular dichromatic absorption difference spectroscopy is developed to measure the spin diffusion dynamics of electrons in bulk n-GaAs. This spectroscopy has higher detection sensitivity over homodyne detection of spin-grating-diffracted signal. A model to describe circular dichromatic absorption difference signal is derived and used to fit experimental signal to retrieve decaying rate of spin gratings. A spin diffusion constant of D-s=201 +/- 25 cm(2)/s for bulk n-GaAs has been measured at room temperature using this technique and is close to electron diffusion constant (D-c), which is much different from the case in GaAs quantum wells where D-s is markedly less than D-c.
Resumo:
We develop a swept frequency method for measuring the frequency response of photodetectors; (PDs) based on harmonic analysis. In this technique, a lightwave from a laser source is modulated by a radio-frequency (RF) signal via a Mach-Zehnder LiNbO3 modulator, and detected by a PD under test. The measured second-order harmonic of the RF signal contains information of the frequency responses and nonlinearities of the RF source, modulator, and PD. The frequency response of the PD alone is obtained by deducting the known frequency responses and nonlinearities of the RF source and modulator. Compared with the conventional swept frequency method, the measurement frequency range can be doubled using the proposed method. Experiment results show a good agreement between the measured results and those obtained using other techniques.
Resumo:
We present a parametrically efficient method for measuring the entanglement of formation E-f in an arbitrarily given unknown two-qubit state rho(AB) by local operations and classical communication. The two observers, Alice and Bob, first perform some local operations on their composite systems separately, by which the desired global quantum states can be prepared. Then they estimate seven functions via two modified local quantum networks supplemented a classical communication. After obtaining these functions, Alice and Bob can determine the concurrence C and the entanglement of formation E-f.