987 resultados para Maximum and minimum air temperature


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few studies evaluate the amount of particulate matter less than 2.5 mm in diameter (PM2.5) in relation to a change in lung function among adults in a population. The aim of this study was to assess the association of coal as a domestic energy source to pulmonary function in an adult population in inner-city areas of Zunyi city in China where coal use is common. In a cross-sectional study of 104 households, pulmonary function measurements were assessed and compared in 110 coal users and 121 non-coal users (≥18 years old) who were all nonsmokers. Several sociodemographic factors were assessed by questionnaire, and ventilatory function measurements including forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), the FEV1/FVC ratio, and peak expiratory flow rate (PEFR) were compared between the 2 groups. The amount of PM2.5 was also measured in all residences. There was a significant increase in the relative concentration of PM2.5 in the indoor kitchens and living rooms of the coal-exposed group compared to the non-coal-exposed group. In multivariate analysis, current exposure to coal smoke was associated with a 31.7% decrease in FVC, a 42.0% decrease in FEV1, a 7.46% decrease in the FEV1/FVC ratio, and a 23.1% decrease in PEFR in adult residents. The slope of lung function decrease for Chinese adults is approximately a 2-L decrease in FVC, a 3-L decrease in FEV1, and an 8 L/s decrease in PEFR per count per minute of PM2.5 exposure. These results demonstrate the harmful effects of indoor air pollution from coal smoke on the lung function of adult residents and emphasize the need for public health efforts to decrease exposure to coal smoke.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of a diurnal sine-wave temperature cycle (250 +- 5° C) on the wa terI-e etc r o1 yt est a t us 0 f gol df1' Sh , Carassius auratus, was assessed through determination of Na+, K+, Mg2+, Ca2+, Cl- and water content in plasma, Red blood cells and muscle tissue. Animals were also acclimated to o 0 0 static temperatures (20 C, 25 c, 30 C) corresponding to the high, low and mid-ooint temperatures of the cycle. All groups were sampled at 03:00, 09:00, 15:00 and 21:00 hr. Hemoglobin content and packed cell volume, as well as electrolyte and 'water levels were determined for each animal and red cell ion concentrations and ion : hemoglobin ratios estimated. Cycled animals were distinct from those at constant temperatures in several respects. Hematological parameters were elevated above those of animals at constant temperature and were, on a diurnal basis, more stable. Red blood cell electrolyte levels varied in an adaptively appropriate fashion to cycle temperatures. This was not the case in the constant temperature groups_ Under the cycling regime, plasma ion levels were more diurnally stable than those of constant temperature fish. Although muscle parameters in cycled fish exhibited more fluctuation than was observed in plasma, these also tended to be relatively more stable than was the caseErythrocytic data are discussed in terms of their effects on hemoglobin-oxygen affinity while plasma and muscle observations were considered from the standpoint of overall water-electrolyte balance. In general, cycled fish appeared to be capable of stabilizing overall body fluid composition, while simultaneously effecting adaptively-appropriate modifications in the erythrocytic ionic microenvironment of hemoglobin. The sometimes marked diurnal variability of water-electrolyte status in animals held at constant temperature as opposed to the conservation of cycled fish suggests that this species is, in some fashion, programmed for regulation in a thermally-fluctuating environment. If this interpretation is valid and a phenomenon of general occurrence, some earlier studies involving constant acclimation of eurythermal species normally occupying habitats which vary in temperature on a daily basis may require reconsideration. at constant temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The representation of the diurnal cycle in the Hadley Centre climate model is evaluated using simulations of the infrared radiances observed by Meteosat 7. In both the window and water vapour channels, the standard version of the model with 19 levels produces a good simulation of the geographical distributions of the mean radiances and of the amplitude of the diurnal cycle. Increasing the vertical resolution to 30 levels leads to further improvements in the mean fields. The timing of the maximum and minimum radiances reveals significant model errors, however, which are sensitive to the frequency with which the radiation scheme is called. In most regions, these errors are consistent with well documented errors in the timing of convective precipitation, which peaks before noon in the model, in contrast to the observed peak in the late afternoon or evening. When the radiation scheme is called every model time step (half an hour), as opposed to every three hours in the standard version, the timing of the minimum radiance is improved for convective regions over central Africa, due to the creation of upper-level layer-cloud by detrainment from the convection scheme, which persists well after the convection itself has dissipated. However, this produces a decoupling between the timing of the diurnal cycles of precipitation and window channel radiance. The possibility is raised that a similar decoupling may occur in reality and the implications of this for the retrieval of the diurnal cycle of precipitation from infrared radiances are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to demonstrate the importance of changing temperature variability with climate change in assessments of future heat-related mortality. Previous studies have only considered changes in the mean temperature. Here we present estimates of heat-related mortality resulting from climate change for six cities: Boston, Budapest, Dallas, Lisbon, London and Sydney. They are based on climate change scenarios for the 2080s (2070-2099) and the temperature-mortality (t-m) models constructed and validated in Gosling et al. (2007). We propose a novel methodology for assessing the impacts of climate change on heat-related mortality that considers both changes in the mean and variability of the temperature distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A seasonal forecasting system that is capable of skilfully predicting rainfall totals on a regional scale would be of great value to Ethiopia. Here, we describe how a statistical model can exploit the teleconnections described in part 1 of this pair of papers to develop such a system. We show that, in most cases, the predictors selected objectively by the statistical model can be interpreted in the light of physical teleconnections with Ethiopian rainfall, and discuss why, in some cases, unexpected regions are chosen as predictors. We show that the forecast has skill in all parts of Ethiopia, and argue that this method could provide the basis of an operational seasonal forecasting system for Ethiopia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated differences in bovine limbal epithelial cell differentiation when expanded upon intact (amniotic epithelial cells and basement membrane remaining) and denuded human amniotic membrane, a commonly used substrate in ophthalmic surgery for corneal stem cell transplantation. Ex vivo expansion of the epithelial cells, in supplemented media, continued for 2 weeks followed by 1 week under ‘air-lifting’ conditions. Before and after air-lifting the differentiated (K3/K12 positive) and undifferentiated (K14 positive) cells were quantified by immunohistochemistry, Western blotting and quantitative PCR. Limbal epithelial cells expanded upon amniotic membrane formed 4-6 stratified layers, both on intact and denuded amniotic membrane. On denuded amniotic membrane the proportion of differentiated cells remained unaltered following airlifting. Within cells grown on intact amniotic membrane, however, the number of differentiated cells increased significantly following air-lifting. These results have important implications for both basic and clinical research. Firstly, they show that bovine limbal epithelia can be used as an alternative source of cells for basic research investigating ex vivo limbal stem cells expansion. Secondly, these findings serve as a warning to clinicians that the affect of amniotic membrane on transplantable cells is not fully understood; the use of intact or denuded amniotic membrane can produce different results in terms of the amount of differentiation, once cells are exposed to the air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sea and Land Surface Temperature Radiometer (SLSTR) is a nine channel visible and infrared high precision radiometer designed to provide climate data of global sea and land surface temperatures. The SLSTR payload is destined to fly on the Ocean and Medium-Resolution Land Mission for the ESA/EU Global Monitoring for Environment and Security (GMES) Programme Sentinel-3 mission to measure the sea and land temperature and topography for near real-time environmental and atmospheric climate monitoring of the Earth. In this paper we describe the optical layout of infrared optics in the instrument, spectral thin-film multilayer design, and system channel throughput analysis for the combined interference filter and dichroic beamsplitter coatings to discriminate wavelengths at 3.74, 10.85 & 12.0 μm. The rationale for selection of thin-film materials, deposition technique, and environmental testing, inclusive of humidity, thermal cycling and ionizing radiation testing are also described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth’s fair weather atmospheric electric field shows, in clean air, an average daily variation which follows universal time, globally independent of the measurement position. This single diurnal cycle variation (maximum around 19UT and minimum around 03UT) is widely known as the Carnegie curve, after the geophysical survey vessel of the Carnegie Institution of Washington on which the original measurement campaigns demonstrating the universal time variation were undertaken. The Carnegie curve’s enduring importance is in providing a reference variation against which atmospheric electricity measurements are still compared; it is believed to originate from regular daily variations in atmospheric electrification associated with the different global disturbed weather regions. Details of the instrumentation, measurement principles and data obtained on the Carnegie’s seventh and final cruise are reviewed here, also deriving new harmonic coefficients allowing calculation of the Carnegie curve for different seasons. The additional harmonic analysis now identifies changes in the phasing of the maximum and minimum in the Carnegie curve, which shows a systematic seasonal variation, linked to the solstices and equinoxes, respectively.