932 resultados para Marine sciences
Resumo:
An interlaboratory comparison (ILC) was conducted to evaluate the proficiency of multiple laboratories to quantify dimethylsulfide (DMS) in aqueous solution. Ten participating laboratories were each supplied with blind duplicate test solutions containing dimethylsulfoniopropionate hydrochloride (DMSP HCl) dissolved in acidified artificial seawater. The test solutions were prepared by the coordinating laboratory from a DMSP HCl reference material that was synthesized and purity certified for this purpose. A concentration range was specified for the test solutions and the participating laboratories were requested to dilute them as required for their analytical procedure, together with the addition of excess alkali under gas-tight conditions to convert the DMSP to DMS. Twenty-two DMS concentrations and their estimated expanded measurement uncertainties (95% confidence level) were received from the laboratories. With two exceptions, the within-laboratory variability was 5% or less and the between-laboratory variability was ~ 25%. The magnitude of expanded measurement uncertainties reported from all participants ranged from 1% to 33% relative to the result. The information gained from this pilot ILC indicated the need for further test sample distribution studies of this type so that participating laboratories can identify systematic errors in their analysis procedures and realistically evaluate their measurement uncertainty. The outcome of ILC studies provides insights into the comparability of data in the global surface seawater DMS database.
Resumo:
We used coincident Envisat RA2 and AATSR temperature and wind speed data from 2008/2009 to calculate the global net sea-air flux of dimethyl sulfide (DMS), which we estimate to be 19.6 Tg S a21. Our monthly flux calculations are compared to open ocean eddy correlation measurements of DMS flux from 10 recent cruises, with a root mean square difference of 3.1 lmol m22 day21. In a sensitivity analysis, we varied temperature, salinity, surface wind speed, and aqueous DMS concentration, using fixed global changes as well as CMIP5 model output. The range of DMS flux in future climate scenarios is discussed. The CMIP5 model predicts a reduction in surface wind speed and we estimate that this will decrease the global annual sea-air flux of DMS by 22% over 25 years. Concurrent changes in temperature, salinity, and DMS concentration increase the global flux by much smaller amounts. The net effect of all CMIP5 modelled 25 year predictions was a 19% reduction in global DMS flux. 25 year DMS concentration changes had significant regional effects, some positive (Southern Ocean, North Atlantic, Northwest Pacific) and some negative (isolated regions along the Equator and in the Indian Ocean). Using satellite-detected coverage of coccolithophore blooms, our estimate of their contribution to North Atlantic DMS emissions suggests that the coccolithophores contribute only a small percentage of the North Atlantic annual flux estimate, but may be more important in the summertime and in the northeast Atlantic.
Resumo:
This paper explores the social dimensions of an experimental release of carbon dioxide (CO2) carried out in Ardmucknish Bay, Argyll, United Kingdom. The experiment, which aimed to understand detectability and potential effects on the marine environment should there be any leakage from a CO2 storage site, provided a rare opportunity to study the social aspects of a carbon dioxide capture and storage-related event taking place in a lived-in environment. Qualitative research was carried out in the form of observation at public information events about the release, in-depth interviews with key project staff and local stakeholders/community members, and a review of online media coverage of the experiment. Focusing mainly on the observation and interview data, we discuss three key findings: the role of experience and analogues in learning about unfamiliar concepts like CO2 storage; the challenge of addressing questions of uncertainty in public engagement; and the issue of when to commence engagement and how to frame the discussion. We conclude that whilst there are clearly slippages between a small-scale experiment and full-scale CCS, the social research carried out for this project demonstrates that issues of public and stakeholder perception are as relevant for offshore CO2 storage as they are for onshore.
Resumo:
Marine ecosystems are complex networks of organisms interacting either directly or indirectly while under the influence of the physical and chemical properties of the medium they inhabit. The interplay between these biological agents and their abiotic environment results in complex non-linear responses to individual and multiple stressors, influenced by feedbacks between these organisms and their environment. These ecosystems provide key services that benefit humanity such as food provisioning via the transfer of energy to exploited fish populations or climate regulation via the sinking, subsequent mineralization and ultimately storage of carbon in the ocean interior. These key characteristics or emergent features of marine ecosystems are subject to rapid change (e.g. regime shifts; Alheit et al., 2005 and Scheffer et al., 2009), with outcomes that are largely unpredictable in a deterministic sense. The North Atlantic Ocean is host to a number of such systems which are collectively being influenced by the unique physical and chemical features of this ocean basin, such as the Atlantic Meridional Overturning Circulation (AMOC), the basin’s ventilation with the Arctic Ocean, the dynamics of heat transport via the Gulf Stream and the formation of deep water at high latitudes. These features drive the solubility and biological pumps and support the production and environments that results in large exploited fish stocks. Our knowledge of its functioning as a coupled system, and in particular how it will respond to change, is still limited despite the scientific effort exerted over more than 100 years. This is due in part to the difficulty of providing synoptic overviews of a vast area, and to the fact that most fieldwork provides only snapshots of the complex physical, chemical and biological processes and their interactions. These constraints have in the past limited the development of a mechanistic understanding of the basin as a whole, and thus of the services it provides.
Resumo:
Marine ecosystems provide many ecosystem goods and services. However, these ecosystems and the benefits they create for humans are subject to competing uses and increasing pressures. As a consequence of the increasing threats to the marine environment, several regulations require applying an ecosystem-based approach for managing the marine environment. Within the Mediterranean Sea, in 2008, the Contracting Parties of the Mediterranean Action Plan decided to progressively apply the Ecosystem Approach (EcAp) with the objective of achieving Good Environmental Status (GES) for 2018. To assess the Environmental Status, the EcAp proposes 11 Ecological Objectives, each of which requires a set of relevant indicators to be integrated. Progress towards the EcAp entails a gradual and important challenge for North-African countries, and efforts have to be initiated to propose and discuss methods. Accordingly, to enhance the capacity of North-African countries to implement EcAp and particularly to propose and discuss indicators and methods to assess GES, the aim of this manuscript is to identify the practical problems and gaps found at each stage of the Environmental Status assessment process. For this purpose, a stepwise method has been proposed to assess the Environmental Status using Ecologic Objective 5-Eutrophication as example.
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
Anthropogenic climate change is exerting pressures on coastal ecosystems through increases in temperature, precipitation and ocean acidification. Phytoplankton community structure and photo-physiology are therefore adapting to these conditions. Changes in phytoplankton biomass and photosynthesis in relation to temperature and nutrient concentrations were assessed using a 14 year dataset from a coastal station in the Western English Channel (WEC). Dinoflagellate and coccolithophorid biomass exhibited a positive correlation with temperature, reaching the highest biomass at between 15 and 17°C. Diatoms showed a negative correlation with temperature, with highest biomass at 10°C. Chlorophyll a (chl a) normalised light-saturated photosynthetic rates (PBm) exhibited a hyperbolic response to increasing temperature, with an initial linear increase from 8 to 11°C, and reaching a plateau from 12°C. There was however no significant positive correlation between nutrients and phytoplankton biomass or PBm, which reflects the lag time between nutrient input and phytoplankton growth at this coastal site. The major phytoplankton groups that occurred at this site occupied distinct thermal niches, which in turn modified PBm. Increasing temperature, and higher water column stratification, was major factors in the initiation of dinoflagellates blooms at this site. Dinoflagellates blooms during summer also co-varied with silicate concentration, and acted as a tracer of dissolved inorganic nitrogen and phosphate from river run-off, which were subsequently reduced during these blooms. The data implies that increasing temperature and high river runoff during summer, will promote dinoflaglellates blooms in the WEC.
Resumo:
Coastal zones and shelf-seas are important for tourism, commercial fishing and aquaculture. As a result the importance of good water quality within these regions to support life is recognised worldwide and a number of international directives for monitoring them now exist. This paper describes the AlgaRisk water quality monitoring demonstration service that was developed and operated for the UK Environment Agency in response to the microbiological monitoring needs within the revised European Union Bathing Waters Directive. The AlgaRisk approach used satellite Earth observation to provide a near-real time monitoring of microbiological water quality and a series of nested operational models (atmospheric and hydrodynamic-ecosystem) provided a forecast capability. For the period of the demonstration service (2008–2013) all monitoring and forecast datasets were processed in near-real time on a daily basis and disseminated through a dedicated web portal, with extracted data automatically emailed to agency staff. Near-real time data processing was achieved using a series of supercomputers and an Open Grid approach. The novel web portal and java-based viewer enabled users to visualise and interrogate current and historical data. The system description, the algorithms employed and example results focussing on a case study of an incidence of the harmful algal bloom Karenia mikimotoi are presented. Recommendations and the potential exploitation of web services for future water quality monitoring services are discussed.
Resumo:
Transient micronutrient enrichment of the surface ocean can enhance phytoplankton growth rates and alter microbial community structure with an ensuing spectrum of biogeochemical feedbacks. Strong phytoplankton responses to micronutrients supplied by volcanic ash have been reported recently. Here we: (i) synthesize findings from these recent studies; (ii) report the results of a new remote sensing study of ash fertilization; and (iii) calculate theoretical bounds of ash-fertilized carbon export. Our synthesis highlights that phytoplankton responses to ash do not always simply mimic that of iron amendment; the exact mechanisms for this are likely biogeochemically important but are not yet well understood. Inherent optical properties of ash-loaded seawater suggest rhyolitic ash biases routine satellite chlorophyll-a estimation upwards by more than an order of magnitude for waters with <0.1 mg chlorophyll-a m-3, and less than a factor of 2 for systems with >0.5 mg chlorophyll-a m-3. For this reason post-ash-deposition chlorophyll-a changes in oligotrophic waters detected via standard Case 1 (open ocean) algorithms should be interpreted with caution. Remote sensing analysis of historic events with a bias less than a factor of 2 provided limited stand-alone evidence for ash-fertilization. Confounding factors were poor coverage, incoherent ash dispersal, and ambiguity ascribing biomass changes to ash supply over other potential drivers. Using current estimates of iron release and carbon export efficiencies, uncertainty bounds of ash-fertilized carbon export for 3 events are presented. Patagonian iron supply to the Southern Ocean from volcanic eruptions is less than that of windblown dust on thousand year timescales but can dominate supply at shorter timescales. Reducing uncertainties in remote sensing of phytoplankton response and nutrient release from ash are avenues for enabling assessment of the oceanic response to large-scale transient nutrient enrichment.
Resumo:
Global increase in sea temperatures has been suggested to facilitate the incoming and spread of tropical invaders. The increasing success of these species may be related to their higher physiological performance compared with indigenous ones. Here, we determined the effect of temperature on the aerobic metabolic scope (MS) of two herbivorous fish species that occupy a similar ecological niche in the Mediterranean Sea: the native salema (Sarpa salpa) and the invasive marbled spinefoot (Siganus rivulatus). Our results demonstrate a large difference in the optimal temperature for aerobic scope between the salema (21.8°C) and the marbled spinefoot (29.1°C), highlighting the importance of temperature in determining the energy availability and, potentially, the distribution patterns of the two species. A modelling approach based on a present-day projection and a future scenario for oceanographic conditions was used to make predictions about the thermal habitat suitability (THS, an index based on the relationship between MS and temperature) of the two species, both at the basin level (the whole Mediterranean Sea) and at the regional level (the Sicilian Channel, a key area for the inflow of invasive species from the Eastern to the Western Mediterranean Sea). For the present-day projection, our basin-scale model shows higher THS of the marbled spinefoot than the salema in the Eastern compared with the Western Mediterranean Sea. However, by 2050, the THS of the marbled spinefoot is predicted to increase throughout the whole Mediterranean Sea, causing its westward expansion. Nevertheless, the regional-scale model suggests that the future thermal conditions of Western Sicily will remain relatively unsuitable for the invasive species and could act as a barrier for its spread westward. We suggest that metabolic scope can be used as a tool to evaluate the potential invasiveness of alien species and the resilience to global warming of native species.
Resumo:
The spawning areas of tropical anguillid eels in the South Pacific are poorly known, and more information about their life histories is needed to facilitate conservation. We genetically characterized 83 out of 84 eels caught on Gaua Island (Vanuatu) and tagged 8 eels with pop-up satellite transmitters. Based on morphological evidence, 32 eels were identified as Anguilla marmorata, 45 as A. megastoma and 7 as A. obscura. Thirteen of these eels possessed a mitochondrial DNA sequence (control region, 527 bp) or nuclear haplotype (GTH2b, 268 bp) conflicting with their species designation. These individuals also had multi-locus genotypes (6 microsatellite loci) intermediate between the species, and 9 of these eels further possessed heterozygote genotypes at species-diagnostic nuclear single nucleotide polymorphisms (SNPs). We classified these individuals as possibly admixed between A. marmorata and A. megastoma. One A. marmorata and 1 A. megastoma migrated 634 and 874 km, respectively, towards the border between the South Equatorial Current and the South Equatorial Counter Current. Both species descended from around 200 m depth at night to 750 m during the day. Lunar cycle affected the upper limit of migration depths of both species. The tags remained attached for 3 and 5 mo and surfaced <300 km from the pop-up location of a previously tagged A. marmorata pop-up location. A salinity maximum at the pop-up locations corresponding to the upper nighttime eel migration depths may serve as a seamark of the spawning area. The similar pop-up locations of both species and the evidence for admixture suggest that these tropical eels share a sympatric spawning area.
Disturbance to conserved bacterial communities in the cold water gorgonian coral Eunicella verrucosa
Resumo:
The bacterial communities associated with healthy and diseased colonies of the cold-water gorgonian coral Eunicella verrucosa at three sites off the south-west coast of England were compared using denaturing gradient gel electrophoresis (DGGE) and clone libraries. Significant differences in community structure between healthy and diseased samples were discovered, as were differences in the level of disturbance to these communities at each site; this correlated with depth and sediment load. The majority of cloned sequences from healthy coral tissue affiliated with the Gammaproteobacteria. The stability of the bacterial community and dominance of specific genera found across visibly healthy colonies suggest the presence of a specific microbial community. Affiliations included a high proportion of Endozoicomonas sequences, which were most similar to sequences found in tropical corals. This genus has been found in a number of invertebrates and is suggested to have a role in coral health and in the metabolisation of dimethylsulfoniopropionate (DMSP) produced by zooxanthellae. However, screening of colonies for the presence of zooxanthellae produced a negative result. Diseased colonies showed a decrease in affiliated clones and an increase in clones related to potentially harmful/transient microorganisms but no increase in a particular pathogen. This study demonstrates that a better understanding of these bacterial communities, the factors that affect them and their role in coral health and disease will be of critical importance in predicting future threats to temperate gorgonian communities.
Resumo:
Fish provides more than 4.5 billion people with at least 15 % of their average per capita intake of animal protein. Fish's unique nutritional properties make it also essential to the health of billions of consumers in both developed and developing countries. Fish is one of the most efficient converters of feed into high quality food and its carbon footprint is lower compared to other animal production systems. Through fish-related activities (fisheries and aquaculture but also processing and trading), fish contribute substantially to the income and therefore to the indirect food security of more than 10 % of the world population, essentially in developing and emergent countries. Yet, limited attention has been given so far to fish as a key element in food security and nutrition strategies at national level and in wider development discussions and interventions. As a result, the tremendous potential for improving food security and nutrition embodied in the strengthening of the fishery and aquaculture sectors is missed. The purpose of this paper is to make a case for a closer integration of fish into the overall debate and future policy about food security and nutrition. For this, we review the evidence from the contemporary and emerging debates and controversies around fisheries and aquaculture and we discuss them in the light of the issues debated in the wider agriculture/farming literature. The overarching question that underlies this paper is: how and to what extent will fish be able to contribute to feeding 9 billion people in 2050 and beyond?
Resumo:
Understanding the mechanisms linking oceanographic processes and marine vertebrate habitat use is critical to effective management of populations of conservation concern. The basking shark Cetorhinus maximus has been shown to associate with oceanographic fronts – physical interfaces at the transitions between water masses – to exploit foraging opportunities resulting from aggregation of zooplankton. However, the scale, significance and variability of these observed associations have not yet been established. Here, we quantify the influence of mesoscale (10s – 100s km) frontal activity on habitat use over timescales of weeks to months. We use animal-mounted archival tracking with composite front mapping via Earth Observation (EO) remote sensing to provide an oceanographic context to individual shark movements. We investigate levels of association with fronts occurring over two spatio-temporal scales, (i) broad-scale seasonally persistent frontal zones and (ii) contemporaneous mesoscale thermal and chl-a fronts. Using random walk simulations and logistic regression within an iterative generalised linear mixed modelling (GLMM) framework, we find that seasonal front frequency is a significant predictor of shark presence. Temporally-matched oceanographic metrics also indicate that sharks demonstrate a preference for productive regions, and associate with contemporaneous thermal and chl-a fronts more frequently than could be expected at random. Moreover, we highlight the importance of cross-frontal temperature change and persistence, which appear to interact to affect the degree of prey aggregation along thermal fronts. These insights have clear implications for understanding the preferred habitats of basking sharks in the context of anthropogenic threat management and marine spatial planning in the northeast Atlantic.
Resumo:
Polar Oceans are natural CO2 sinks because of the enhanced solubility of CO2 in cold water. The Arctic Ocean is at additional risk of accelerated ocean acidification (OA) because of freshwater inputs from sea ice and rivers, which influence the carbonate system. Winter conditions in the Arctic are of interest because of both cold temperatures and limited CO2 venting to the atmosphere when sea ice is present. Earlier OA experiments on Arctic microbial communities conducted in the absence of ice cover, hinted at shifts in taxa dominance and diversity under lowered pH. The Catlin Arctic Survey provided an opportunity to conduct in situ, under-ice, OA experiments during late Arctic winter. Seawater was collected from under the sea ice off Ellef Ringnes Island, and communities were exposed to three CO2 levels for 6 days. Phylogenetic diversity was greater in the attached fraction compared to the free-living fraction in situ, in the controls and in the treatments. The dominant taxa in all cases were Gammaproteobacteria but acidification had little effect compared to the effects of containment. Phylogenetic net relatedness indices suggested that acidification may have decreased the diversity within some bacterial orders, but overall there was no clear trend. Within the experimental communities, alkalinity best explained the variance among samples and replicates, suggesting subtle changes in the carbonate system need to be considered in such experiments. We conclude that under ice communities have the capacity to respond either by selection or phenotypic plasticity to heightened CO2 levels over the short term.