923 resultados para Maria Carolina, Queen, consort of Ferdinand I, King of the Two Sicilies, 1752-1814.
Resumo:
Aim To evaluate in vitro the effectiveness of sodium hypochlorite (NaOCl). chlorhexidine (CHX) and live intracanal medicaments on microorganisms within root canals.Methodology Ninety-six human single-rooted extracted teeth were used. After removing the crowns, canal preparation was completed and the external root Surfaces were coated with epoxy resin. Following sterilization. The teeth were contaminated with Candida albicans and enterococcus faecalis. and were incubated at 37 +/- 1 degreesC for 7 days. The teeth were divided according to the irrigant solution or intracanal medicament: group 1. sterile physiologic solution (SPS) and calcium hydroxide (Ca(OH)(2)) paste: group 2. SPS and camphorated paramonochlorophenol (CPMC): group 3.SPS and tricresol formalin: group 4, SPS and CaOH2 + CPMC paste: group 5, SPS and PMC furacin; group 6.2.5%, NaOCl without intracanal medication: group 7, 2.0% CHX without intracanal medication and group 8, SPS Without intracanal medication (control group). Microbiological samples were collected with sterile paper points, and bacterial growth was determined. The data were submitted to the analysis of variance (ANOVA. P = 0.05).Results For C. albicans, groups 3 and S were statistically less effective than groups 1, 2. 4 and 5 (Kruskal-Wallis (K-W) = 65.241; gl = 7; P = 0.001). For E. faecalis, groups 6 and 8 were statistically less effective than groups 1-4 and 7 (K-W = 61.048; gl = 7; P = 0.001).Conclusions Ca(OH)(2) + CPMC paste was the most effective intracanal medicament for the elimination of the two microorganisms; 2.0% CHX solution was more effective than 2.5% NaOCl against E. faecalis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C-3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem 11 level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 mu mol m(-2) s(-1), as well as to both stress factors combined (LLSA = low light plus salt; HLCO = high light of 1000 mu mol m(-2)s(-1), no salt; HLSA = high light plus salt). A control of LLCO = low light of 200 mu mol m(-2) s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem 11 (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Delta malate) of similar to 12 mM in the course of the experiment, while HLSA induced stronger CAM of Delta malate similar to 20mM. Effective quantum yield of PSII, Delta F/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F-v/F-m, at predawn times was not affected by any of the conditions, always remaining at >= 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (< 0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETRmax, declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that A crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and tight irradiance stress combined. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
A structural study of the thermal evolution of Ni0.69Cr0.31(OH)(2)(CO3)(0.155)(.)nH(2)O into NiO and tetragonal NiCr2O4 is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr-III-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.
Resumo:
Dynamic light scattering, surface tension, and clouding temperature have been monitored to elucidate the solution properties of mixed micelles formed between the anionic surfactant sodium dodecyl sulfate (SDS) and the nonionic surfactant pentaethylene glycol mono-n-dodecyl ether (C12E5) over a wide range of surfactant concentration and temperature. Addition of 0.1 M NaCl shifts the relaxational modes to higher frequency and lowers the clouding temperature (T-c) of the nonionic surfactant solution by about 1 degrees C compared to the salt-free system. T-c for the mixed surfactant solutions is higher than that of the binary C12E5 solutions and depends sensitively on the concentration of the two surfactants but increases only slightly when the total surfactant concentration is increased at a given molar C12E5/SDS concentration ratio. With C12E5/SDS = 5.7, for example, T-c is 46.0 and 47.5 degrees C, respectively, at 5 and 70 mM of C12E5 the mixed solutions are homogeneous and stable and contain nonspherical micelles, which are close to monodisperse over a range of surfactant concentrations and temperature. The mixed system has a lower Krafft point than binary SDS solutions and shows an approximately ideal behavior in contrast to the binary C12E5 solution. The hydrodynamic radius (RH) of the mixed micelle increases with temperature as do C12E5 micelles in the binary solutions and also with increasing C12E5/SDS ratio. At 25 degrees C, the critical micelle concentration of the mixed solution lies between those of the individual surfactants and decreases as the C12E5/SDS ratio is increased.
Resumo:
To possibly reduce postoperative adhesions that occur after ocular myoplasties, we investigated the topical effects of 0.04% mitomycin C on the repaired areas of the medial rectus muscle using an equine renal capsule preserved in 98% glycerin for reinforcement of the sutures. Twenty-four rabbits, divided into two groups of 12 animals each [untreated (control) and treated group (MMC)], were submitted to surgical rupture of the medial rectus muscle of one eye and repair of the defect 24 h later with sutures and an equine renal capsule. Post-operative prophylactic treatment of the two groups consisted of the administration of eye drops containing neomycin, polymyxin B and dexamethasone at regular 6-h intervals for eight consecutive days and daily rinsing with physiological saline. MMC animals received additional treatment with topical 0.04% mitomycin C every 6 h for 14 consecutive days. Slit lamp biomicroscopy showed greater irritation of the ocular surface in MMC animals during the first days post operatively. Adhesions were observed at 15 and 30 days of assessment in the two groups, but were more extensive in control animals at 60 days. Histopathology revealed inflammatory exudation in both groups, which was greater in MMC animals. Mitomycin C (0.04%) instilled at 6-h intervals for 14 consecutive days reduced the occurrence of fibrosis in the myoplastic areas. However, the equine renal capsule was found to be of little benefit for the reinforcement of myoplasties.
Resumo:
A molecular phylogenetic analysis of the Hyla pulchella species group was performed to test its monophyly, explore the interrelationships of its species, and evaluate the validity of the taxa that were considered subspecies of H. pulchella. Approximately 2.8 kb from the mitochondrial genes 12s, tRNA valine, 16s, and Cytochrome b were sequenced. The analysis included 50 terminals representing 10 of the 14-15 species currently recognized in the H. pulchella group, including samples from several localities for some taxa, several outgroups, as well as two species previously suspected to be related with the group (Hyla guentheri and Hyla hischoffi). The results show that the H. pulchella and Hyla circumdata groups are distantly related, and, therefore, should be recognized as separate groups. As currently defined, the H. pulchella group is paraphyletic with respect to the Hyla polytaenia group; therefore, we recognize the Hyla polytaenia clade in the H. pulchella group. Two subspecies of H. pulchella recognized by some authors are considered full species including Hyla pulchella riojana because it is only distantly related to H. pulchella, and Hyla pulchella cordobae because molecular and non-molecular evidence suggests that it is specifically distinct. With the inclusion of the H. polytaenia clade, H. guentheri, and H. bischoffi, and the recognition of the two former subspecies of H. pulchella as distinct species, the H. pulchella group now comprises 25 described species. All representatives of the H. pulchella group with an Andean distribution are monophyletic and nested within a clade from the Atlantic forest from south-southeastern Brazil/northeastern Argentina, and Cerrado gallery forest from central Brazil. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bottom-up methods to obtain nanocrystals usually result in metastable phases, even in processes carried out at room temperature or under soft annealing conditions. However, stable phases, often associated with anisotropic shapes, are obtained in only a few special cases. In this paper we report on the synthesis of two well-studied oxides-titanium and zirconium oxide-in the nanometric range, by a novel route based on the decomposition of peroxide complexes of the two metals under hydrothermal soft conditions, obtaining metastable and stable phases in both cases through transformation. High-resolution transmission electron microscopy analysis reveals the existence of typical defects relating to growth by the oriented attachment mechanism in the stable crystals. The results suggest that the mechanism is associated to the phase transformation of these structures.
Resumo:
Marine and freshwater stingrays are characterized by the presence of one to three mineralized serrated stingers on the tail, which are covered by epidermal cells secreting venom. When these animals are dorsally touched, the stinger can be introduced into the aggressor by a whip reflex mechanism of the tail, causing severe mechanical injuries and inoculating the venom. Accidents in humans are frequent causing intense local pain, oedema and erythema. Bacterial secondary infection is also common. In addition, injuries involving freshwater stingrays frequently cause a persistent cutaneous necrosis. The exact localization of the venom secretory epidermal cells in the stinger is controversial, but it is known that it is preferentially located in the ventrolateral grooves. A comparative morphological analysis of the stinger epidermal tissue of different marine and freshwater Brazilian stingray species was carried out. The results indicate that in freshwater species there is a larger number of protein secretory cells, of two different types, spread over the whole stinger epidermis, while in marine species the protein secretory cells are located only around or inside the stinger ventrolateral grooves. These differences between the stingers of the two groups can justify the more severe envenomation accidents with the freshwater species when compared with the marine species. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We calculate the Green functions of the two versions of the generalized Schwinger model, the anomalous and the nonanomalous one, in their higher order Lagrangian density form. Furthermore, it is shown through a sequence of transformations that the bosonized Lagrangian density is equivalent to the former, at least for the bosonic correlation functions. The introduction of the sources from the beginning, leading to a gauge-invariant source term, is also considered. It is verified that the two models have the same correlation functions only if the gauge-invariant sector is taken into account. Finally, there is presented a generalization of the Wess-Zumino term, and its physical consequences are studied, in particular the appearance of gauge-dependent massive excitations.
Resumo:
We construct infinite sets of local conserved charges for the conformal affine Toda model. The technique involves the abelianization of the two-dimensional gauge potentials satisfying the zero-curvature form of the equations of motion. We find two infinite sets of chiral charges and apart from two lowest spin charges, all the remaining ones do not possess chiral densities. Charges of different chiralities Poisson commute among themselves. We discuss the algebraic properties of these charges and use the fundamental Poisson bracket relation to show that the charges conserved in time are in involution. Connections to other Toda models are established by taking particular limits.
Resumo:
The main properties of realistic models for manganites are studied using analytic mean-field approximations and computational numerical methods, focusing on the two-orbital model with electrons interacting through Jahn-Teller (JT) phonons and/or Coulombic repulsions. Analyzing the model including both interactions by the combination of the mean-field approximation and the exact diagonalization method, it is argued that the spin-charge-orbital structure in the insulating phase of the purely JT-phononic model with a large Hund couphng J(H) is not qualitatively changed by the inclusion of the Coulomb interactions. As an important application of the present mean-held approximation, the CE-type antiferromagnetic state, the charge-stacked structure along the z axis, and (3x(2) - r(2))/(3y(2) - r(2))-type orbital ordering are successfully reproduced based on the JT-phononic model with large JH for the half-doped manganite, in agreement with recent Monte Carlo simulation results. Topological arguments and the relevance of the Heisenberg exchange among localized t(2g) spins explains why the inclusion of the nearest-neighbor Coulomb interaction does not destroy the charge stacking structure. It is also verified that the phase-separation tendency is observed both in purely JT-phononic (large JH) and purely Coulombic models in the vicinity of the hole undoped region, as long as realistic hopping matrices are used. This highlights the qualitative similarities of both approaches and the relevance of mixed-phase tendencies in the context of manganites. In addition, the rich and complex phase diagram of the two-orbital Coulombic model in one dimension is presented. Our results provide robust evidence that Coulombic and JT-phononic approaches to manganites are not qualitatively different ways to carry out theoretical calculations, but they share a variety of common features.
Resumo:
The effects of sodium and potassium excretion after intrahypothalamic administration of two α-adrenoceptor agonists and the effect of α-adrenoceptor antagonists were studied in groups of rats. Prazosin was equally effective at blocking the natriuretic and kaliuretic responses to the α1-adrenoceptor agonist phenylephrine and the mixed α1/α2-adrenoceptor agonist noradrenaline, while yohimbine which acts preferentially on α2-adrenoceptors was effective in potentiating these responses. These results suggest the presence of two types of α-adrenoceptors for the modulation of ventromedial hypothalamic pathways that interfere with the regulation of the two cations: stimulation of α1-adrenoceptors facilitates, while stimulation of α2-adrenoceptors inhibits the excretion of the ions.
Resumo:
The influence of a nearest-neighbor Coulomb repulsion of strength V on the properties of the ferromagnetic Kondo model is analyzed using computational techniques. The Hamiltonian studied here is defined on a chain using localized S = 1/2 spins, and one orbital per site. Special emphasis is given to the influence of the Coulomb repulsion on the regions of phase separation recently discovered in this family of models, as well as on the double-exchange-induced ferromagnetic ground state. When phase separation dominates at V= 0, the Coulomb interaction breaks the large domains of the two competing phases into small islands of one phase embedded into the other. This is in agreement with several experimental results, as discussed in the text. Vestiges of the original phase separation regime are found in the spin structure factor as incommensurate peaks, even at large values of V. In the ferromagnetic regime close to density n = 0.5, the Coulomb interaction induces tendencies to charge ordering without altering the fully polarized character of the state. This regime of charge-ordered ferromagnetism may be related with experimental observations of a similar phase by Chen and Cheong [Phys. Rev. Lett. 76, 4042 (1996)]. Our results reinforce the recently introduced notion [see, e.g., S. Yunoki et al., Phys. Rev. Lett. 80, 845 (1998)] that in realistic models for manganites analyzed with unbiased many-body techniques, the ground state properties arise from a competition between ferromagnetism and phase-separation - charge-ordering tendencies. ©1999 The American Physical Society.
Resumo:
A strict proof of the equivalence of the Duffin-Kemmer-Petiau and Klein-Gordon Fock theories is presented for physical S-matrix elements in the case of charged scalar particles minimally interacting with an external or quantized electromagnetic field. The Hamiltonian canonical approach to the Duffin - Kemmer Petiau theory is first developed in both the component and the matrix form. The theory is then quantized through the construction of the generating functional for the Green's functions, and the physical matrix elements of the S-matrix are proved to be relativistic invariants. The equivalence of the two theories is then proved for the matrix elements of the scattered scalar particles using the reduction formulas of Lehmann, Symanzik, and Zimmermann and for the many-photon Green's functions.