972 resultados para Mansfeld, Ernst vonMansfeld, Ernst vonErnstMansfeldvon
Resumo:
The Pulitzer Prize in Music, established in 1943, is one of America's most prestigious awards. It has been awarded to fifty-three composers for a "distinguished musical composition of significant dimension by an American that has had its first performance in the United States during the year." Composers who have won the Pulitzer Prize are considered to be at the pinnacle of their creativity and have provided the musical world with classical music compositions worthy of future notice. By tracing the history of Pulitzer Prize-winning composers and their compositions, researchers and musicians enhance their understanding of the historical evolution of American music, and its impact on American culture. Although the clarinet music of some of these composers is rarely performed today, their names will be forever linked to the Pulitzer, and because of that, their compositions will enjoy a certain sense of immortality. Of the fifty-four composers who have won the award, forty-seven have written for the clarinet in a solo or chamber music setting (five or less instruments). Just as each Pulitzer Prize-winning composition is a snapshot of the state of American music at that time, these works trace the history of American clarinet musical development, and therefore, they are valuable additions to the clarinet repertoire and worthy of performance. This dissertation project consists of two recitals featuring the solo and chamber clarinet music of sixteen Pulitzer Prize-winning composers, extended program notes containing information on each composer's life, their music, the Pulitzer Prize-winning composition and the recital selection, and a complete list of all Pulitzer Prize-winning composers and their solo and chamber clarinet music. Featured Composers Dominick Argento, To Be Sung Upon the Water Leslie Bassett, Soliloquies William Bolcom, Little Suite of Four Dances Aaron Copland, As it Fell Upon a Day John Corigliano, Soliloquy Norman Dello Joio, Concertante Morton Gould, Benny's Gig Charles Ives, Largo Douglas Moore, Quintet for Clarinet and Strings George Perle, Three Sonatas Quincy Porter, Quintet for Clarinet and Strings Mel Powell, Clarinade Shulamit Ran, Private Game Joseph Schwantner, Entropy Leo Sowerby, Sonata Ernst Toch, Adagio elegiaco
Resumo:
In 1938, in Düsseldorf, the Nazis put on an exhibit entitled "Entartete Musik” (degenerate music), which included composers on the basis of their “racial origins” (i.e. Jews), or because of the “modernist style” of their music. Performance, publication, broadcast, or sale of music by composers deemed “degenerate” was forbidden by law throughout the Third Reich. Among these composers were some of the most prominent composers of the first half of the twentieth-century. They included Stravinsky, Schoenberg, Webern, Berg, Mahler, Ernst Krenek, George Gershwin, Kurt Weill, Erwin Schulhoff, and others. The music of nineteenth-century composers of Jewish origin, such as Mendelssohn and Meyerbeer, was also officially proscribed. In each of the three recitals for this project, significant works were performed by composers who were included in this exhibition, namely, Mendelssohn, Webern, Berg, Weill, and Hans Gal. In addition, as an example of self-censorship, a work of Karl Amadeus Hartmann was included. Hartmann chose “internal exile” by refusing to allow performance of his works in Germany during the Nazi regime. One notable exception to the above categories was a work by Beethoven that was presented as a bellwether of the relationship between music and politics. The range of styles and genres in these three recitals indicates the degree to which Nazi musical censorship cut a wide swath across Europe’s musical life with devastating consequences for its music and culture.
Resumo:
Background: Hepatorenal tyrosinaemia (Tyr 1) is a rare inborn error of tyrosine metabolism. Without treatment, patients are at high risk of developing acute liver failure, renal dysfunction and in the long run hepatocellular carcinoma. The aim of our study was to collect cross-sectional data. Methods. Via questionnaires we collected retrospective data of 168 patients with Tyr 1 from 21 centres (Europe, Turkey and Israel) about diagnosis, treatment, monitoring and outcome. In a subsequent consensus workshop, we discussed data and clinical implications. Results: Early treatment by NTBC accompanied by diet is essential to prevent serious complications such as liver failure, hepatocellular carcinoma and renal disease. As patients may remain initially asymptomatic or develop uncharacteristic clinical symptoms in the first months of life newborn mass screening using succinylacetone (SA) as a screening parameter in dried blood is mandatory for early diagnosis. NTBC-treatment has to be combined with natural protein restriction supplemented with essential amino acids. NTBC dosage should be reduced to the minimal dose allowing metabolic control, once daily dosing may be an option in older children and adults in order to increase compliance. Metabolic control is judged by SA (below detection limit) in dried blood or urine, plasma tyrosine (<400 μM) and NTBC-levels in the therapeutic range (20-40 μM). Side effects of NTBC are mild and often transient. Indications for liver transplantation are hepatocellular carcinoma or failure to respond to NTBC. Follow-up procedures should include liver and kidney function tests, tumor markers and imaging, ophthalmological examination, blood count, psychomotor and intelligence testing as well as therapeutic monitoring (SA, tyrosine, NTBC in blood). Conclusion: Based on the data from 21 centres treating 168 patients we were able to characterize current practice and clinical experience in Tyr 1. This information could form the basis for clinical practice recommendations, however further prospective data are required to underpin some of the recommendations.
Resumo:
El correcto manejo del N resulta muy importante en los cultivos de trigo y cebada. Esto se explica por la importancia que tiene este nutriente en el crecimiento de los cultivos, por la movilidad que presenta en el suelo, por la diversidad de factores (bióticos como abióticos) que lo afectan y por el peso económico que tiene el correcto uso de este nutriente. Por lo expresado hemos estudiado con datos de 164 chacras para diferentes años (1999-2000-2001-2002) el efecto de la Temperatura, Precipitación, Fecha de Siembra y Antecesores sobre la disponibilidad de N-NO3 - a la siembra de cultivos de invierno. Bajas precipitaciones durante los 40 días previos a la siembra, alta temperatura del período y fecha de siembra temprana se asociaron a los mayores niveles de N-NO3 - disponibles en el suelo a la siembra. En función de esta información, cuando las lluvias durante los 40 días previos a la siembra son menos de 20 mm y se logran siembras tempranas, es esperable que no haya déficit inicial de N para los cultivos. En siembras inmediatas a períodos de precipitaciones excesivas (135 mm) es esperable muy baja disponibilidad de N-NO3 -, por lo que, si no se dispone del valor de análisis, sería necesario corregir con la dosis máxima propuesta. Para las situaciones intermedias, la única herramienta válida sería el análisis de suelo correspondiente
Resumo:
This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.
Resumo:
Four non-destructive tests for determining the length of fatigue cracks within the solder joints of a 2512 surface mount resistor are investigated. The sensitivity of the tests is obtained using finite element analysis with some experimental validation. Three of the tests are mechanically based and one is thermally based. The mechanical tests all operate by applying different loads to the PCB and monitoring the strain response at the top of the resistor. The thermal test operates by applying a heat source underneath the PCB, and monitoring the temperature response at the top of the resistor. From the modelling work done, two of these tests have shown to be sensitive to cracks. Some experimental results are presented but further work is required to fully validate the simulation results.
Resumo:
The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.
Resumo:
The electronics industry and the problems associated with the cooling of microelectronic equipment are developing rapidly. Thermal engineers now find it necessary to consider the complex area of equipment cooling at some level. This continually growing industry also faces heightened pressure from consumers to provide electronic product miniaturization, which in itself increases the demand for accurate thermal management predictions to assure product reliability. Computational fluid dynamics (CFD) is considered a powerful and almost essential tool for the design, development and optimization of engineering applications. CFD is now widely used within the electronics packaging design community to thermally characterize the performance of both the electronic component and system environment. This paper discusses CFD results for a large variety of investigated turbulence models. Comparison against experimental data illustrates the predictive accuracy of currently used models and highlights the growing demand for greater mathematical modelling accuracy with regards to thermal characterization. Also a newly formulated low Reynolds number (i.e. transitional) turbulence model is proposed with emphasis on hybrid techniques.
Resumo:
In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method
Resumo:
In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate
Resumo:
At present the vast majority of Computer-Aided- Engineering (CAE) analysis calculations for microelectronic and microsystems technologies are undertaken using software tools that focus on single aspects of the physics taking place. For example, the design engineer may use one code to predict the airflow and thermal behavior of an electronic package, then another code to predict the stress in solder joints, and then yet another code to predict electromagnetic radiation throughout the system. The reason for this focus of mesh-based codes on separate parts of the governing physics is essentially due to the numerical technologies used to solve the partial differential equations, combined with the subsequent heritage structure in the software codes. Using different software tools, that each requires model build and meshing, leads to a large investment in time, and hence cost, to undertake each of the simulations. During the last ten years there has been significant developments in the modelling community around multi- physics analysis. These developments are being followed by many of the code vendors who are now providing multi-physics capabilities in their software tools. This paper illustrates current capabilities of multi-physics technology and highlights some of the future challenges
Resumo:
This paper discusses a reliability based optimisation modelling approach demonstrated for the design of a SiP structure integrated by stacking dies one upon the other. In this investigation the focus is on the strategy for handling the uncertainties in the package design inputs and their implementation into the design optimisation modelling framework. The analysis of fhermo-mechanical behaviour of the package is utilised to predict the fatigue life-time of the lead-free board level solder interconnects and warpage of the package under thermal cycling. The SiP characterisation is obtained through the exploitation of Reduced Order Models (ROM) constructed using high fidelity analysis and Design of Experiments (DoE) methods. The design task is to identify the optimal SiP design specification by varying several package input parameters so that a specified target reliability of the solder joints is achieved and in the same time design requirements and package performance criteria are met