653 resultados para MYOCARDIUM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Recent studies have shown that mechanically unloading a failing heart may induce reverse remodeling and functional improvement. However, these benefits may be balanced by an unloading-related remodeling including myocardial atrophy that might lead to decrease in function. Using a model of heterotopic heart transplantation, we aimed to characterize the myocardial changes induced by long-term unloading. MATERIAL AND METHODS: Macroscopic as well as cellular and functional changes were followed in normal hearts unloaded for a 3-month period. Microscopic parameters were evaluated with stereologic methodology. Myocardial contractile function was quantified with a Langendorff isolated, perfused heart technique. RESULTS: Atrophy was macroscopically obvious and accompanied by a 67% reduction of the myocyte volume and a 43% reduction of the interstitial tissue volume, thus accounting for a shift of the myocyte/connective tissue ratio in favor of noncontractile tissue. The absolute number of cardiomyocyte nuclei decreased from 64.7 +/- 5.1 x 10(7) in controls to 22.6 +/- 3.7 x 10(7) (30 days) and 21.6 +/- 3.1 x 10(7) (90 days) after unloading (P < .05). The numeric nucleic density in the unloaded myocardium, as well as the mean cardiomyocyte volume per cardiomyocyte nucleus, remained constant throughout the 90 days of observation. Functional data indicated an increase in ventricular stiffness, although contractile function was preserved, as confirmed by unaltered maximal developed pressure and increased contractility (maximum rate of left ventricular pressure development) and relaxation (minimum rate of left ventricular pressure development). CONCLUSION: Atrophic remodeling involves both the myocyte and interstitial tissue compartment. These data suggest that although there is decreased myocardial volume and increased stiffness, contractile capacity is preserved in the long-term unloaded heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiopulmonary bypass (CPB) may induce serious side effects, potentially leading to myocardial failure. The Na(+)-K(+)-ATPase is a key component for myocardial function. Due to its developmental regulation, results from adult studies cannot be adopted to the situation in childhood. Right atrial myocardium from patients with left-to-right shunts at atrial level (VO, n=8) and those without (NO, n=8) was excised during heart surgery before and after CPB. Na(+)-K(+)-ATPase isoforms ATP1A1 (p=0.008) and ATP1A3 (p=0.038) decreased during CPB, which decrease was restricted to the VO group. This study highlights the importance of the underlying heart defect for susceptibility to the effects of CPB, showing a reduced Na(+)-K(+)-ATPase mRNA expression only in patients with left-to-right shunts on the atrial level. This seemed to be an early molecular event, as apart from one, none of the patients showed heart failure before or after surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expression pattern of angiotensin AT2 receptors with predominance during fetal life and upregulation under pathological conditions during tissue injury/repair process suggests that AT2 receptors may exert an important action in injury/repair adaptive mechanisms. Less is known about AT2 receptors in acute ischemia-induced cardiac injury. We aimed here to elucidate the role of AT2 receptors after acute myocardial infarction. Double immunofluorescence staining showed that cardiac AT2 receptors were mainly detected in clusters of small c-kit+ cells accumulating in peri-infarct zone and c-kit+AT2+ cells increased in response to acute cardiac injury. Further, we isolated cardiac c-kit+AT2+ cell population by modified magnetic activated cell sorting and fluorescence activated cell sorting. These cardiac c-kit+AT2+ cells, represented approximately 0.19% of total cardiac cells in infarcted heart, were characterized by upregulated transcription factors implicated in cardiogenic differentiation (Gata-4, Notch-2, Nkx-2.5) and genes required for self-renewal (Tbx-3, c-Myc, Akt). When adult cardiomyocytes and cardiac c-kit+AT2+ cells isolated from infarcted rat hearts were cocultured, AT2 receptor stimulation in vitro inhibited apoptosis of these cocultured cardiomyocytes. Moreover, in vivo AT2 receptor stimulation led to an increased c-kit+AT2+ cell population in the infarcted myocardium and reduced apoptosis of cardiomyocytes in rats with acute myocardial infarction. These data suggest that cardiac c-kit+AT2+ cell population exists and increases after acute ischemic injury. AT2 receptor activation supports performance of cardiomyocytes, thus contributing to cardioprotection via cardiac c-kit+AT2+ cell population.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES Percutaneous closure of the transapical (TA) access site for large-calibre devices is an unsolved issue. We report the first experimental data on the TA PLUG device for true-percutaneous closure following large apical access for transcatheter aortic valve implantation. METHODS The TA PLUG, a self-sealing full-core closure device, was implanted in an acute animal study in six pigs (60.2 ± 0.7 kg). All the pigs received 100 IU/kg of heparin. The targeted activated clotting time was left to normalize spontaneously. After accessing the left ventricular apex with a 39 French introducer, the closure plug device was delivered with a 33 French over-the-wire system under fluoroscopic guidance into the apex. Time to full haemostasis as well as rate of bleeding was recorded. Self-anchoring properties were assessed by haemodynamic push stress under adrenalin challenge. An additional feasibility study was conducted in four pigs (58.4 ± 1.1 kg) with full surgical exposure of the apex, and assessed device anchoring by pull-force measurements with 0.5 Newton (N) increments. All the animals were electively sacrified. Post-mortem analysis of the heart was performed and the renal embolic index assessed. RESULTS Of six apical closure devices, five were correctly inserted and fully deployed at the first attempt. One became blocked in the delivery system and was placed successfully at the second attempt. In all the animals, complete haemostasis was immediate and no leak was recorded during the 5-h observation period. Neither leak nor any device dislodgement was observed under haemodynamic push stress with repeated left ventricular peak pressure of up to 220 mmHg. In the feasibility study assessing pull-stressing, device migration occurred at a force of 3.3 ± 0.5 N corresponding to 247.5 mmHg. Post-mortem analyses confirmed full expansion of all devices at the intended target. No macroscopic damage was identified at the surrounding myocardium. The renal embolic index was zero. CONCLUSIONS True-percutaneous left ventricular apex closure following large access is feasible with the self-sealing TA PLUG. The device allows for immediate haemostasis and a reliable anchoring in the acute animal setting. This is the first report of a true-percutaneous closure for large-calibre transcatheter aortic valve implantation access.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene therapy, aimed at the correction of key pathologies being out of reach for conventional drugs, bears the potential to alter the treatment of cardiovascular diseases radically and thereby of heart failure. Heart failure gene therapy refers to a therapeutic system of targeted drug delivery to the heart that uses formulations of DNA and RNA, whose products determine the therapeutic classification through their biological actions. Among resident cardiac cells, cardiomyocytes have been the therapeutic target of numerous attempts to regenerate systolic and diastolic performance, to reverse remodeling and restore electric stability and metabolism. Although the concept to intervene directly within the genetic and molecular foundation of cardiac cells is simple and elegant, the path to clinical reality has been arduous because of the challenge on delivery technologies and vectors, expression regulation, and complex mechanisms of action of therapeutic gene products. Nonetheless, since the first demonstration of in vivo gene transfer into myocardium, there have been a series of advancements that have driven the evolution of heart failure gene therapy from an experimental tool to the threshold of becoming a viable clinical option. The objective of this review is to discuss the current state of the art in the field and point out inevitable innovations on which the future evolution of heart failure gene therapy into an effective and safe clinical treatment relies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The long QT syndrome (LQTS) is a genetic disorder characterized by prolongation of the QT interval in the electrocardiogram (ECG) and a propensity to "torsades de pointes" ventricular tachycardia frequently leading to syncope, cardiac arrest, or sudden death usually in young otherwise healthy individuals. LQTS caused by mutations of predominantly potassium and sodium ion channel genes or channel-interacting proteins leading to positive overcharge of myocardial cell with consequent heterogeneous prolongation of repolarization in various layers and regions of myocardium. These conditions facilitate the early after-depolarization and reentry phenomena underlying development of polymorphic ventricular tachycardia observed in patients with LQTS. Obtaining detailed patient history regarding cardiac events in the patient and his/her family members combined with careful interpretation of standard 12-lead ECG (with precise measurement of QT interval in all available ECGs and evaluation of T-wave morphology) usually is sufficient to diagnose the syndrome. The LQTS show great genetic heterogeneity and has been identified more than 500 mutations distributed in 10 genes: KCNQ1, HERG, SCN5A, KCNE1, KCNE2, ANKB, KCNJ2, CACNA1A, CAV3 and SCN4B. Despite advances in the field, 25-30% of patients remain undiagnosed genetic. Genetic testing plays an important role and is particularly useful in cases with nondiagnostic or borderline ECG findings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the case of a patient in whom successful radiofrequency catheter ablation of an idiopathic ventricular tachycardia (VT) originating in the main stem of the pulmonary artery was performed. After successful ablation of the index arrhythmia, which was an idiopathic right ventricular outflow tract VT, a second VT with a different QRS morphology was reproducibly induced. Mapping of the second VT revealed the presence of myocardium approximately 2 cm above the pulmonary valve. Application of radiofrequency energy at this site resulted in termination and noninducibility of this VT. After 6-month follow-up, the patient remained free from VT recurrences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation of: Noorman M, Hakim S, Kessler E et al. Remodeling of the cardiac sodium channel, connexin43, and plakoglobin at the intercalated disk in patients with arrhythmogenic cardiomyopathy. Heart Rhythm 10(3), 412-419 (2013). Arrhythmogenic cardiomyopathy (AC) is a heart muscle disease characterized by a progressive replacement of the ventricular myocardium with adipose and fibrous tissue. This disease is often associated with mutations in genes encoding desmosomal proteins in the majority of patients. Based on results obtained from recent experimental models, a disturbed distribution of gap junction proteins and cardiac sodium channels may also be observed in AC phenotypes, secondary to desmosomal dysfunction. The study from Noorman et al. examined heart sections from patients diagnosed with AC and performed immunohistochemical analyses of N-cadherin, PKP2, PKG, Cx43 and the cardiac sodium channel NaV1.5. Altered expression/distribution of Cx43, PKG and NaV1.5 was found in most cases of patients with AC. The altered expression and/or distribution of NaV1.5 channels in AC hearts may play a mechanistic role in the arrhythmias leading to sudden cardiac death in AC patients. Thus, NaV1.5 should be considered as a supplemental element in the evaluation of risk stratification and management strategies. However, additional experiments are required to clearly understand the mechanisms leading to AC phenotypes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: To investigate unenhanced postmortem 3-T MR imaging (pmMRI) for the detection of pulmonary thrombembolism (PTE) as cause of death. METHODS: In eight forensic cases dying from a possible cardiac cause but with homogeneous myocardium at cardiac pmMRI, additional T2w imaging of the pulmonary artery was performed before forensic autopsy. Imaging was carried out on a 3-T MR system in the axial and main pulmonary artery adapted oblique orientation in situ. In three cases axial T2w pmMRI of the lower legs was added. Validation of imaging findings was performed during forensic autopsy. RESULTS: All eight cases showed homogeneous material of intermediate signal intensity within the main pulmonary artery and/or pulmonary artery branches. Autopsy confirmed the MR findings as pulmonary artery thrombembolism. At lower leg imaging unilateral dilated veins and subcutaneous oedema with or without homogeneous material of intermediate signal intensity within the popliteal vein were found. CONCLUSIONS: Unenhanced pmMRI demonstrates pulmonary thrombembolism in situ. PmMR may serve as an alternative to clinical autopsy, especially when consent cannot be obtained. KEY POINTS: • Postmortem MRI (pmMRI) provides an alternative to clinical autopsy • Fatal pulmonary thrombembolism (PTE) can now be diagnosed using postmortem MRI (pmMRI). • Special attention has to be drawn to the differentiation of postmortem clots.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Postmortem imaging is increasingly used in forensic practice in cases of natural deaths related to cardiovascular diseases, which represent the most common causes of death in developed countries. While radiological examination is generally considered to be a good complement for conventional autopsy, it was thought to have limited application in cardiovascular pathology. At present, multidetector computed tomography (MDCT), CT angiography, and cardiac magnetic resonance imaging (MRI) are used in postmortem radiological investigation of cardiovascular pathologies. This review presents the actual state of postmortem imaging for cardiovascular pathologies in cases of sudden cardiac death (SCD), taking into consideration both the advantages and limitations. The radiological evaluation of ischemic heart disease (IHD), the most frequent cause of SCD in the General population of industrialized countries, includes the examination of the coronary arteries and myocardium. Postmortem CT angiography (PMCTA) is very useful for the detection of stenoses and occlusions of coronary arteries but less so for the identification of ischemic myocardium. MRI is the method of choice for the radiological investigation of the myocardium in clinical practice, but ist accessibility and application are still limited in postmortem practice. There are very few reports implicating postmortem radiology in the investigation of other causes of SCD, such as cardiomyopathies, coronary artery abnormalities, and valvular pathologies. Cardiomyopathies representing the most frequent cause of SCD in young athletes cannot be diagnosed by echocardiography, the most widely available technique in clinical practice for the functional evaluation of the heart and the detection of cardiomyopathies. PMCTA and MRI have the potential to detect advanced stages of diseases when morphological substrate is present, but these methods have yet to be sufficiently validated for postmortem cases. Genetically determined channelopathies cannot be detected radiologically. This review underlines the need to establish the role of postmortem radiology in the diagnosis of SCD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AIMS To investigate a pressure-controlled intermittent coronary sinus occlusion (PICSO) system in an ischaemia/reperfusion model. METHODS AND RESULTS We randomly assigned 18 pigs subjected to 60 minutes ischaemia by left anterior descending (LAD) coronary artery balloon occlusion to PICSO (n=12, groups A and B) or to controls (n=6, group C). PICSO started 10 minutes before (group A), or 10 minutes after (group B) reperfusion and was maintained for 180 minutes. A continuous drop of distal LAD pressure was observed in group C. At 180 minutes of reperfusion, LAD diastolic pressure was significantly lower in group C compared to groups A and B (p=0.02). LAD mean pressure was significantly less than the systemic arterial mean pressure in group C (p=0.02), and the diastolic flow slope was flat, compared to groups A and B (p=0.03). IgG and IgM antibody deposition was significantly higher in ischaemic compared to non-ischaemic tissue in group C (p<0.05). Significantly more haemorrhagic lesions were seen in the ischaemic myocardium of group C, compared to groups A and B (p=0.002). The necrotic area differed non-significantly among groups. CONCLUSIONS PICSO was safe and effective in improving coronary perfusion pressure and reducing antibody deposition consistent with reduced microvascular obstruction and ischaemia/reperfusion injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cardiac shock wave therapy (CSWT) delivered to the myocardium increases capillary density and regional myocardial blood flow in animal experiments. In addition, nonenzymatic nitric oxide production and the upregulation of vascular growth factor's mRNA by CSWT have been described. The aim of the study was therefore to test its potential to relieve symptoms in patients with chronic stable angina pectoris. Methods: Twenty-one patients (mean age 68.2 ± 8.3 years, 19 males) with chronic refractory angina pectoris and evidence of inducible myocardial ischemia during MIBI-SPECT imaging, were randomized into a treatment (n = 11) and a placebo arm (n = 10). The region of exercise-induced ischemia was treated with echocardiographic guidance during nine sessions over a period of 3 months. One session of CSWT consisted of 200 shots/spot (9--12 spots/session) with an energy intensity of 0.09 mJ/mm2. In the control group acoustic simulation was performed without energy application. Medication was kept unchanged during the whole treatment period. Results: In the treatment group, symptoms improved in 9/11 patients, and the ischemic threshold, determined by cardiopulmonary exercise stress testing, increased from 80 ± 28 to 95 ± 28 W (P= 0.036). In the placebo arm, only 2/10 patients reported an improvement and the ischemic threshold remained unchanged (98 ± 23 to 107 ± 23 W; P= 0.141). The items “physical functioning” (P= 0.043), “general health perception” (P= 0.046), and “vitality” (P= 0.035) of the SF-36 questionnaire significantly improved in the treatment arm, whereas in the placebo arm, no significant change was noted. Neither arrhythmias, troponin rise nor complications were observed during treatment. Conclusions: This placebo controlled trial shows a significant improvement in symptoms, quality of life parameters and ischemic threshold during exercise in patients with chronic refractory angina pectoris treated with CSWT. Thus, CSWT represents a new option for the treatment of patients with refractory AP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.