910 resultados para MUCOSAL IMMUNITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differential group delay measurement of narrowband fiber devices using a fiber polarization scrambler with a modulation phase shift technique is demonstrated. Accurate measurement is realized with high wavelength and delay resolution and immunity to environmental perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective In this study, we have used a chemometrics-based method to correlate key liposomal adjuvant attributes with in-vivo immune responses based on multivariate analysis. Methods The liposomal adjuvant composed of the cationic lipid dimethyldioctadecylammonium bromide (DDA) and trehalose 6,6-dibehenate (TDB) was modified with 1,2-distearoyl-sn-glycero-3-phosphocholine at a range of mol% ratios, and the main liposomal characteristics (liposome size and zeta potential) was measured along with their immunological performance as an adjuvant for the novel, postexposure fusion tuberculosis vaccine, Ag85B-ESAT-6-Rv2660c (H56 vaccine). Partial least square regression analysis was applied to correlate and cluster liposomal adjuvants particle characteristics with in-vivo derived immunological performances (IgG, IgG1, IgG2b, spleen proliferation, IL-2, IL-5, IL-6, IL-10, IFN-γ). Key findings While a range of factors varied in the formulations, decreasing the 1,2-distearoyl-sn-glycero-3-phosphocholine content (and subsequent zeta potential) together built the strongest variables in the model. Enhanced DDA and TDB content (and subsequent zeta potential) stimulated a response skewed towards a cell mediated immunity, with the model identifying correlations with IFN-γ, IL-2 and IL-6. Conclusion This study demonstrates the application of chemometrics-based correlations and clustering, which can inform liposomal adjuvant design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UNLABELLED: Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE: Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of Alzheimer’s disease (AD) is a critical unsolved question, and while recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by pro-inflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c+ microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.

There is a large interest in identifying, lineage tracing, and determining the physiologic roles of monophagocytes in Alzheimer’s disease. While Cx3cr1 knock-in fluorescent reporting and Cre expressing mice have been critical for studying neuroimmunology, mice that are homozygous null or hemizygous for CX3CR1 have perturbed neural development and immune responses. There is, therefore, a need for similar tools in which mice are CX3CR1+/+. Here, we describe a mouse where Cre is driven by the Cx3cr1 promoter on a bacterial artificial chromosome (BAC) transgene (Cx3cr1-CreBT) and the Cx3cr1 locus is unperturbed. Similarly to Cx3cr1-Cre knock-in mice, these mice express Cre in Ly6C-, but not Ly6C+, monocytes and tissue macrophages, including microglia. These mice represent a novel tool that maintains the Cx3cr1 locus while allowing for selective gene targeting in monocytes and tissue macrophages.

The study of immunity in Alzheimer’s requires the ability to identify and quantify specific immune cell subsets by flow cytometry. While it is possible to identify lymphocyte subsets based on cell lineage-specific markers, the lack of such markers in brain myeloid cell subsets has prevented the study of monocytes, macrophages and dendritic cells. By improving on tissue homogenization, we present a comprehensive protocol for flow cytometric analysis, that allows for the identification of several cell types that have not been previously identified by flow cytometry. These cell types include F4/80hi macrophages, which may be meningeal macrophages, IA/IE+ macrophages, which may represent perivascular macrophages, and dendritic cells. The identification of these cell types now allows for their study by flow cytometry in homeostasis and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunity is broadly defined as a mechanism of protection against non-self entities, a process which must be sufficiently robust to both eliminate the initial foreign body and then be maintained over the life of the host. Life-long immunity is impossible without the development of immunological memory, of which a central component is the cellular immune system, or T cells. Cellular immunity hinges upon a naïve T cell pool of sufficient size and breadth to enable Darwinian selection of clones responsive to foreign antigens during an initial encounter. Further, the generation and maintenance of memory T cells is required for rapid clearance responses against repeated insult, and so this small memory pool must be actively maintained by pro-survival cytokine signals over the life of the host.

T cell development, function, and maintenance are regulated on a number of molecular levels through complex regulatory networks. Recently, small non-coding RNAs, miRNAs, have been observed to have profound impacts on diverse aspects of T cell biology by impeding the translation of RNA transcripts to protein. While many miRNAs have been described that alter T cell development or functional differentiation, little is known regarding the role that miRNAs have in T cell maintenance in the periphery at homeostasis.

In Chapter 3 of this dissertation, tools to study miRNA biology and function were developed. First, to understand the effect that miRNA overexpression had on T cell responses, a novel overexpression system was developed to enhance the processing efficiency and ultimate expression of a given miRNA by placing it within an alternative miRNA backbone. Next, a conditional knockout mouse system was devised to specifically delete miR-191 in a cell population expressing recombinase. This strategy was expanded to permit the selective deletion of single miRNAs from within a cluster to discern the effects of specific miRNAs that were previously inaccessible in isolation. Last, to enable the identification of potentially therapeutically viable miRNA function and/or expression modulators, a high-throughput flow cytometry-based screening system utilizing miRNA activity reporters was tested and validated. Thus, several novel and useful tools were developed to assist in the studies described in Chapter 4 and in future miRNA studies.

In Chapter 4 of this dissertation, the role of miR-191 in T cell biology was evaluated. Using tools developed in Chapter 3, miR-191 was observed to be critical for T cell survival following activation-induced cell death, while proliferation was unaffected by alterations in miR-191 expression. Loss of miR-191 led to significant decreases in the numbers of CD4+ and CD8+ T cells in the periphery lymph nodes, but this loss had no impact on the homeostatic activation of either CD4+ or CD8+ cells. These peripheral changes were not caused by gross defects in thymic development, but rather impaired STAT5 phosphorylation downstream of pro-survival cytokine signals. miR-191 does not specifically inhibit STAT5, but rather directly targets the scaffolding protein, IRS1, which in turn alters cytokine-dependent signaling. The defect in peripheral T cell maintenance was exacerbated by the presence of a Bcl-2YFP transgene, which led to even greater peripheral T cell losses in addition to developmental defects. These studies collectively demonstrate that miR-191 controls peripheral T cell maintenance by modulating homeostatic cytokine signaling through the regulation of IRS1 expression and downstream STAT5 phosphorylation.

The studies described in this dissertation collectively demonstrate that miR-191 has a profound role in the maintenance of T cells at homeostasis in the periphery. Importantly, the manipulation of miR-191 altered immune homeostasis without leading to severe immunodeficiency or autoimmunity. As much data exists on the causative agents disrupting active immune responses and the formation of immunological memory, the basic processes underlying the continued maintenance of a functioning immune system must be fully characterized to facilitate the development of methods for promoting healthy immune function throughout the life of the individual. These findings also have powerful implications for the ability of patients with modest perturbations in T cell homeostasis to effectively fight disease and respond to vaccination and may provide valuable targets for therapeutic intervention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an important human pathogen that colonizes the gut mucosa via attaching and effacing (A/E) lesions; A/E lesion formation in vivo and ex vivo is dependent on the type III secretion system (T3SS) effector Tir. Infection of cultured cells by EHEC leads to induction of localized actin polymerization, which is dependent on Tir and a second T3SS effector protein, TccP, also known as EspF(U). Recently, cortactin was shown to bind both the N terminus of Tir and TccP via its SH3 domain and to play a role in EHEC-triggered actin polymerization in vitro. In this study, we investigated the recruitment of cortactin to the site of EHEC adhesion during infection of in vitro-cultured cells and mucosal surfaces ex vivo (using human terminal ileal in vitro organ cultures [IVOC]). We have shown that cortactin is recruited to the site of EHEC adhesion in vitro downstream of TccP and N-WASP. Deletion of the entire N terminus of Tir or replacing the N-terminal polyproline region with alanines did not abrogate actin polymerization or cortactin recruitment. In contrast, recruitment of cortactin to the site of EHEC adhesion in IVOC is TccP independent. These results imply that cortactin is recruited to the site of EHEC adhesion in vitro and ex vivo by different mechanisms and suggest that cortactin might have a role during EHEC infection of mucosal surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) employ either Nck, TccP/TccP2, or Nck and TccP/TccP2 pathways to activate the neuronal Wiskott-Aldrich syndrome protein (N-WASP) and to trigger actin polymerization in cultured cells. This phenotype is used as a marker for the pathogenic potential of EPEC and EHEC strains. In this paper we report that EPEC O125:H6, which represents a large category of strains, lacks the ability to utilize either Nck or TccP/TccP2 and hence triggers actin polymerization in vitro only inefficiently. However, we show that infection of human intestinal biopsies with EPEC O125:H6 results in formation of typical attaching and effacing lesions. Expression of TccP in EPEC O125:H6, which harbors an EHEC O157-like Tir, resulted in efficient actin polymerization in vitro and enhanced colonization of human intestinal in vitro organ cultures with detectable N-WASP and electron-dense material at the site of bacterial adhesion. These results show the existence of a natural category of EPEC that colonizes the gut mucosa using Nck- and TccP-independent mechanisms. Importantly, the results highlight yet again the fact that conclusions made on the basis of in vitro cell culture models cannot be extrapolated wholesale to infection of mucosal surfaces and that the ability to induce actin polymerization on cultured cells should not be used as a definitive marker for EPEC and EHEC virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To investigate the local, regulatory role of the mucosa on bladder strip contractility from normal and overactive bladders and to examine the effect of botulinum toxin A (BoNT-A).

METHODS: Bladder strips from spontaneously hyperactive rat (SHR) or normal rats (Sprague Dawley, SD) were dissected for myography as intact or mucosa-free preparations. Spontaneous, neurogenic and agonist-evoked contractions were investigated. SHR strips were incubated in BoNT-A (3 h) to assess effects on contractility.

RESULTS: Spontaneous contraction amplitude, force-integral or frequency were not significantly different in SHR mucosa-free strips compared with intacts. In contrast, spontaneous contraction amplitude and force-integral were smaller in SD mucosa-free strips than in intacts; frequency was not affected by the mucosa. Frequency of spontaneous contractions in SHR strips was significantly greater than in SD strips. Neurogenic contractions in mucosa-free SHR and SD strips at higher frequencies were smaller than in intact strips. The mucosa did not affect carbachol-evoked contractions in intact versus mucosa-free strips from SHR or SD bladders. BoNT-A reduced spontaneous contractions in SHR intact strips; this trend was also observed in mucosa-free strips but was not significant. Neurogenic and carbachol-evoked contractions were reduced by BoNT-A in mucosa-free but not intact strips. Depolarisation-induced contractions were smaller in BoNT-A-treated mucosa-free strips.

CONCLUSIONS: The mucosal layer positively modulates spontaneous contractions in strips from normal SD but not overactive SHR bladder strips. The novel finding of BoNT-A reduction of contractions in SHR mucosa-free strips indicates actions on the detrusor, independent of its classical action on neuronal SNARE complexes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A decline in the CD4 count is a common feature in HIV/AIDS, suggesting a compromise in immunity of patients. In response, highly active antiretroviral therapy (HAART) is prescribed to slow-down a diminution in the CD4 count and risk of AIDS-related malignancies. However, exercise may improve both the utility and population of innate immune cell components, and may be beneficial for patients with HIV infection. Comparing the effects of different exercises against HAART, on CD4 count, helps in understanding the role and evidence-based application of exercises to ameliorate immune deficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the evolution of the direct and indirect pathways of allorecognition following tissue transplantation is essential in the design of tolerance-promoting protocols. On the basis that donor bone marrow-derived antigen presenting cells are eliminated within days of transplantation, it has been argued that the indirect response represents the major threat to long term transplant survival, and is consequently the key target for regulation. However, the detection of MHC transfer between cells, and particularly the capture of MHC:peptide complexes by dendritic cells, led us to propose a third, semi-direct, pathway of MHC allorecognition. Persistence of this pathway would lead to sustained activation of direct pathway T cells, arguably persisting for the life of the transplant. In this study, we focused on the contribution of acquired MHC class I, on recipient DCs, during the life span of a skin graft. We observed that MHC class I acquisition by recipient DCs occurs for at least one month following transplantation and may be the main source of alloantigen that drives CD8+ cytotoxic T cell responses. In addition, acquired MHC class I-peptide complexes stimulate T cell responses in vivo further emphasizing the need to regulate both pathways to induce indefinite survival of the graft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metazoans rely on efficient mechanisms to oppose infections caused by pathogens. The immediate and first-line defense mechanism(s) in metazoans, referred to as the innate immune system, is initiated upon recognition of microbial intruders by germline encoded receptors and is executed by a set of rapid effector mechanisms. Adaptive immunity is restricted to vertebrate species and it is controlled and assisted by the innate immune system. Interestingly, most of the basic signaling cascades that regulate the primeval innate defense mechanism(s) have been well conserved during evolution, for instance between humans and the fruit fly, Drosophila melanogaster. Being devoid of adaptive signaling and effector systems, Drosophila has become an established model system for studying pristine innate immune cascades and reactions. In general, an immune response is evoked when microorganisms pass the fruit fly’s physical barriers (e.g. cuticle, epithelial lining of gut and trachea), and it is mainly executed in the hemolymph, the equivalent of the mammalian blood. Innate immunity in the fruit fly consists of a phenoloxidase (PO) response, a cellular response (hemocytes), an antiviral response, and the NF-κB dependent production of antimicrobial peptides referred to as the humoral response. The JAK/STAT and Jun kinase signaling cascades are also implicated in the defence against pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human malaria is responsible for over 700,000 deaths a year. To stay abreast of the threat posed by the parasite, a constant stream of new drugs and vector control methods are required. This study focuses on a vaccine that has the potential to protect against parasite infection, but has been hindered by developmental challenges. In malaria prevention, live, attenuated, aseptic, Plasmodium falciparum sporozoites (PfSPZ) can be administered as a highly protective vaccine. PfSPZ are produced using adult female Anopheles stephensi mosquitoes as bioreactors. Production volume and cost of a PfSPZ vaccine for malaria are expected to be directly correlated with Plasmodium falciparum infection intensity in the salivary glands. The sporogonic development of Plasmodium falciparum in A. stephensi to fully infected salivary gland stage sporozoites is dictated by the activities of several known components of the mosquito’s innate immune system. Here I report on the use of genetic technologies that have been rarely, if ever, used in Anopheles stephensi Sda500 to increase the yield of sporozoites per mosquito and enhance vaccine production. By combining the Gal4/UAS bipartite system with in vivo expression of shRNA gene silencing, activity of the IMD signaling pathway downstream effector LRIM1, an antagonist to Plasmodium development, was reduced in the midgut, fat body, and salivary glands of A. stephensi. In infection studies using P. berghei and P. falciparum these transgenic mosquitoes consistently produced significantly more salivary gland stage sporozoites than wildtype controls, with increases in P. falciparum ranging from 2.5 to 10 fold. Using Plasmodium infection assays and qRT-PCR, two novel findings were identified. First, it was shown that 14 days post Plasmodium infection, transcript abundance of the IMD immune effector genes LRIM1, TEP1 and APL1c are elevated, in the salivary glands of A. stephensi, suggesting the salivary glands may play a role in post midgut defense against the parasite. Second, a non-pathogenic IMD signaling pathway response was observed which could suggest an alternative pathway for IMD activation. The information gained from these studies has significantly increased our knowledge of Plasmodium defense in A. stephensi and moreover could significantly improve vaccine production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ecophysiological effects of stress in female Persian sturgeon, Acipenser persicus brood fishes during catch, transport and their confinement in the Kurenski ponds at the Shahid Dr. Beheshti Fish Propagation and Rearing Center were studied. The brood fishes under study were caught at three catch stations located at the Sefidrud River, Sefidrud River estuary and Gorganrud River estuary and were held in ponds at the Shahid Marjani Fish Propagation and Rearing Center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity now occupies a central role in immunology. However, artificial immune system models have largely been inspired by adaptive not innate immunity. This paper reviews the biological principles and properties of innate immunity and, adopting a conceptual framework, asks how these can be incorporated into artificial models. The aim is to outline a meta-framework for models of innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of T-cells within the immune system is to confirm and assess anomalous situations and then either respond to or tolerate the source of the effect. To illustrate how these mechanisms can be harnessed to solve real-world problems, we present the blueprint of a T-cell inspired algorithm for computer security worm detection. We show how the three central T-cell processes, namely T-cell maturation, differentiation and proliferation, naturally map into this domain and further illustrate how such an algorithm fits into a complete immune inspired computer security system and framework.