876 resultados para MONOMERS
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
The high electronegativity and small size of the fluorine atom and the high stability of C-F bonds impart interesting properties and applications to fluorine containing polymers. The unique properties of fluoropolymers include high thermal stability, improved chemical resistance, low surface energies, low coefficients of friction, and low dielectric constants. Applications of fluorinated polymers include use as noncorrosive materials, polymer processing aids, chemically resistant and antifouling coatings, as well as interlayer dielectrics. Fluorine-containing polymers can be directly synthesized via polymerization of fluorine-containing monomers or by post-polymerization modification. The latter method can be used to attach fluorinated species, such as perfluoroalkyl groups, onto conventional polymer chains, thereby imparting properties of fluorine-containing polymers into conventional polymers and widening their range of potential applications.
Resumo:
In a previous article,1 the development and molecular characterization of three polyesters from N-carbobenzyloxy-L-glutamic acid (ZGluOH) were reported. The polymers were a linear, heterochain polyester (ZGluOH and ethylene glycol), a crosslinked heterochain polyester (ZGluOH and diglycidyl ether of 1,4-butanediol), and a crosslinked, heterochain aromatic polyester (ZGluOH and diglycidyl ether of bisphenol A). In this manuscript, results of biodegradation studies are reported. The three polymers hydrolyzed to low molecular weight oligomers similar to the monomers with lipase. When exposed to a mixed culture of micro-organisms, the first two resins degraded to biomass and respiratory gases. The crosslinked heterochain aromatic polyester resisted microbial degradation.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pre-oral digestion is described as the liquefaction of the solid tissues of the prey by secretions of the predator. It is uncertain if pre-oral digestion means pre-oral dispersion of food or true digestion in the sense of the stepwise bond breaking of food polymers to release monomers to be absorbed. Collagenase is the only salivary proteinase, which activity is significant (10%) in relation to Podisus nigrispinus midgut activities. This suggests that pre-oral digestion in P. nigrispinus consists in prey tissue dispersion. This was confirmed by the finding of prey muscles fibers inside P. nigrispinus midguts. Soluble midgut hydrolases from P. nigrispinus were partially purified by ion-exchange chromatography, followed by gel filtration. Two cathepsin L-like proteinases (CAL1 and CAL2) were isolated with the properties: CAL1 (14.7 kDa, pH optimum (pHo) 5.5, km with carbobenzoxy-Phe-Arg-methylcoumarin, Z-FR-MCA, 32 mu M); CAL2 (17 kDa, pHo 5.5, km 11 mu M Z-FR-MCA). Only a single molecular species was found for the other enzymes with the following properties are: amylase (43 kDa, pHo 5.5, km 0.1% starch), aminopeptidase (125 kDa, pHo 5.5, km 0.11 mM L-Leucine-p-nitroanilide), alpha-glucosidase (90 kDa, pHo 5.0, km 5 mM with p-nitrophenyl alpha-D-glucoside). CAL molecular masses are probably underestimated due to interaction with the column. Taking into account the distribution of hydrolases along P. nigrispinus midguts, carbohydrate digestion takes place mainly at the anterior midgut, whereas protein digestion occurs mostly in middle and posterior midgut, as previously described in seed- sucker and blood-feeder hemipterans. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Molecularly imprinted polymers (MIP's) have been applied in several areas of analytical chemistry, including the modification of electrodes. The main purpose of such modification is improving selectivity; however, a gain in sensitivity was also observed in many cases. The most frequent approaches for these modifications are the electrodeposition of polymer films and sol gel deposits, spin and drop coating and self-assembling of films on metal nanoparticles. The preparation of bulk (body) modified composites as carbon pastes and polymer agglutinated graphite have also been investigated. In all cases several analytes including pharmaceuticals, pesticides, and inorganic species, as well as molecules with biological relevance have been successfully used as templates and analyzed with such devices in electroanalytical procedures. Herein, 65 references are presented concerning the general characteristics and some details related to the preparation of MIP's including a description of electrodes modified with MIP's by different approaches. The results using voltammetric and amperometric detection are described.
Resumo:
This study aimed to evaluate the chemical interaction of collagen with some substances usually applied in dental treatments to increase the durability of adhesive restorations to dentin. Initially, the similarity between human dentin collagen and type I collagen obtained from commercial bovine membranes of Achilles deep tendon was compared by the Attenuated Total Reflectance technique of Fourier Transform Infrared (ATR-FTIR) spectroscopy. Finally, the effects of application of 35% phosphoric acid, 0.1M ethylenediaminetetraacetic acid (EDTA), 2% chlorhexidine, and 6.5% proanthocyanidin solution on microstructure of collagen and in the integrity of its triple helix were also evaluated by ATR-FTIR. It was observed that the commercial type I collagen can be used as an efficient substitute for demineralized human dentin in studies that use spectroscopy analysis. The 35% phosphoric acid significantly altered the organic content of amides, proline and hydroxyproline of type I collagen. The surface treatment with 0.1M EDTA, 2% chlorhexidine, or 6.5% proanthocyanidin did not promote deleterious structural changes to the collagen triple helix. The application of 6.5% proanthocyanidin on collagen promoted hydrogen bond formation. (c) 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2012.
Crystallization and preliminary X-ray diffraction of malate dehydrogenase from Plasmodium falciparum
Resumo:
The expression, purification, crystallization and preliminary X-ray diffraction characterization of malate dehydrogenase (MDH) from the malarial parasite Plasmodium falciparum (PfMDH) are reported. In order to gain a deeper understanding of the function and role of PfMDH, the protein was purified to homogeneity. The purified protein crystallized in space group P1, with unit-cell parameters a = 72, b = 157, c = 159 angstrom, a = 105, beta = 101, ? = 95 degrees. The resulting crystals diffracted to a maximal resolution of 2.24 angstrom and the structure has been solved by molecular replacement, with 16 monomers in the asymmetric unit. The 16 monomers are arranged into four independent tetramers, in agreement with previous reports demonstrating the tetrameric solution state of PfMDH. The X-ray structure of PfMDH is expected to clarify the differences in catalysis by PfMDH compared with other MDH family members and to provide a basis for the structure-based design of specific PfMDH inhibitors as well as general MDH inhibitors.
Resumo:
In this present work we present a methodology that aims to apply the many-body expansion to decrease the computational cost of ab initio molecular dynamics, keeping acceptable accuracy on the results. We implemented this methodology in a program which we called ManBo. In the many-body expansion approach, we partitioned the total energy E of the system in contributions of one body, two bodies, three bodies, etc., until the contribution of the Nth body [1-3]: E = E1 + E2 + E3 + …EN. The E1 term is the sum of the internal energy of the molecules; the term E2 is the energy due to interaction between all pairs of molecules; E3 is the energy due to interaction between all trios of molecules; and so on. In Manbo we chose to truncate the expansion in the contribution of two or three bodies, both for the calculation of the energy and for the calculation of the atomic forces. In order to partially include the many-body interactions neglected when we truncate the expansion, we can include an electrostatic embedding in the electronic structure calculations, instead of considering the monomers, pairs and trios as isolated molecules in space. In simulations we made we chose to simulate water molecules, and use the Gaussian 09 as external program to calculate the atomic forces and energy of the system, as well as reference program for analyzing the accuracy of the results obtained with the ManBo. The results show that the use of the many-body expansion seems to be an interesting approach for reducing the still prohibitive computational cost of ab initio molecular dynamics. The errors introduced on atomic forces in applying such methodology are very small. The inclusion of an embedding electrostatic seems to be a good solution for improving the results with only a small increase in simulation time. As we increase the level of calculation, the simulation time of ManBo tends to largely decrease in relation to a conventional BOMD simulation of Gaussian, due to better scalability of the methodology presented. References [1] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 3, 46 (2007). [2] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 4, 1 (2008). [3] R. Rivelino, P. Chaudhuri and S. Canuto; J. Chem. Phys., 118, 10593 (2003).
Resumo:
The dengue virus (DENV) non-structural 1 (NS1) protein plays a critical role in viral RNA replication and has a central position in DENV pathogenesis. DENV NS1 is a glycoprotein expressed in infected mammalian cells as soluble monomers that dimerize in the lumen of the endoplasmic reticulum; NS1 is subsequently transported to the cell surface, where it remains membrane associated or is secreted into the extracellular milieu as a hexameric complex. During the last three decades, the DENV NS1 protein has also been intensively investigated as a potential target for vaccines and antiviral drugs. In addition, NS1 is the major diagnostic marker for dengue infection. This review highlights some important issues regarding the role of NS1 in DENV pathogenesis and its biotechnological applications, both as a target for the development of safe and effective vaccines and antiviral drugs and as a tool for the generation of accurate diagnostic methods
Resumo:
The cytotoxicity of dental composites has been attributed to the release of residual monomers from polymerized adhesive systems due to degradation processes or the incomplete polymerization of materials. 2-Hydroxyethyl methacrylate (HEMA) is one of the major components released from dental adhesives. Cytotoxic effects due to high concentrations of HEMA have already been investigated, but the influence of minor toxic concentrations for long-term exposition on specific proteins such as type I collagen and tenascin has not been studied in depth. The objective of this project was to study the effect of minor toxic concentrations of HEMA on human gingival fibroblasts (HGFs) and human pulp fibroblasts (HPFs), investigating modification in cell morphology, cell viability, and the influence on type I collagen and tenascin proteins. Different concentrations of the resin monomer and different times of exposition were tested on both cell lines. The cell vitality was determined by MTT assay, and high-resolution scanning electron microscopy analysis was performed to evaluate differences in cell morphology before and after treatment. To evaluate the variability in the expression and synthesis of procollagen α1 type I and tenascin proteins on HGFs and HPFs treated with HEMA at different concentrations immunofluorescence, RT-PCR and western blot analysis, were carried out. The treatments on HGFs with 3mmol/L HEMA, showed a strong reduction of procollagen α1 type I protein at 72h and 96h, demonstrating that HEMA interferes both with the synthesis of the procollagen α1 type I protein and its mRNA expression. The results obtained on HPFs treated with different concentrations of HEMA ranging from 0,5mmol/L to 3mmol/L and for different exposition times showed a strong reduction in cell viability in specimens treated for 96h and 168h, while immunofluorescence and western blotting analysis demonstrated a reduction of procollagen α1 type I and an overexpression of tenascin protein. In conclusion, our results showed that the concentrations of HEMA we tested, effect the normal cell production and activity, such as the synthesis of some dental extracellular matrix proteins.
Resumo:
Selective oxidation is one of the simplest functionalization methods and essentially all monomers used in manufacturing artificial fibers and plastics are obtained by catalytic oxidation processes. Formally, oxidation is considered as an increase in the oxidation number of the carbon atoms, then reactions such as dehydrogenation, ammoxidation, cyclization or chlorination are all oxidation reactions. In this field, most of processes for the synthesis of important chemicals used vanadium oxide-based catalysts. These catalytic systems are used either in the form of multicomponent mixed oxides and oxysalts, e.g., in the oxidation of n-butane (V/P/O) and of benzene (supported V/Mo/O) to maleic anhydride, or in the form of supported metal oxide, e.g., in the manufacture of phthalic anhydride by o-xylene oxidation, of sulphuric acid by oxidation of SO2, in the reduction of NOx with ammonia and in the ammoxidation of alkyl aromatics. In addition, supported vanadia catalysts have also been investigated for the oxidative dehydrogenation of alkanes to olefins , oxidation of pentane to maleic anhydride and the selective oxidation of methanol to formaldehyde or methyl formate [1]. During my PhD I focused my work on two gas phase selective oxidation reactions. The work was done at the Department of Industrial Chemistry and Materials (University of Bologna) in collaboration with Polynt SpA. Polynt is a leader company in the development, production and marketing of catalysts for gas-phase oxidation. In particular, I studied the catalytic system for n-butane oxidation to maleic anhydride (fluid bed technology) and for o-xylene oxidation to phthalic anhydride. Both reactions are catalyzed by systems based on vanadium, but catalysts are completely different. Part A is dedicated to the study of V/P/O catalyst for n-butane selective oxidation, while in the Part B the results of an investigation on TiO2-supported V2O5, catalyst for o-xylene oxidation are showed. In Part A, a general introduction about the importance of maleic anhydride, its uses, the industrial processes and the catalytic system are reported. The reaction is the only industrial direct oxidation of paraffins to a chemical intermediate. It is produced by n-butane oxidation either using fixed bed and fluid bed technology; in both cases the catalyst is the vanadyl pyrophosphate (VPP). Notwithstanding the good performances, the yield value didn’t exceed 60% and the system is continuously studied to improve activity and selectivity. The main open problem is the understanding of the real active phase working under reaction conditions. Several articles deal with the role of different crystalline and/or amorphous vanadium/phosphorous (VPO) compounds. In all cases, bulk VPP is assumed to constitute the core of the active phase, while two different hypotheses have been formulated concerning the catalytic surface. In one case the development of surface amorphous layers that play a direct role in the reaction is described, in the second case specific planes of crystalline VPP are assumed to contribute to the reaction pattern, and the redox process occurs reversibly between VPP and VOPO4. Both hypotheses are supported also by in-situ characterization techniques, but the experiments were performed with different catalysts and probably under slightly different working conditions. Due to complexity of the system, these differences could be the cause of the contradictions present in literature. Supposing that a key role could be played by P/V ratio, I prepared, characterized and tested two samples with different P/V ratio. Transformation occurring on catalytic surfaces under different conditions of temperature and gas-phase composition were studied by means of in-situ Raman spectroscopy, trying to investigate the changes that VPP undergoes during reaction. The goal is to understand which kind of compound constituting the catalyst surface is the most active and selective for butane oxidation reaction, and also which features the catalyst should possess to ensure the development of this surface (e.g. catalyst composition). On the basis of results from this study, it could be possible to project a new catalyst more active and selective with respect to the present ones. In fact, the second topic investigated is the possibility to reproduce the surface active layer of VPP onto a support. In general, supportation is a way to improve mechanical features of the catalysts and to overcome problems such as possible development of local hot spot temperatures, which could cause a decrease of selectivity at high conversion, and high costs of catalyst. In literature it is possible to find different works dealing with the development of supported catalysts, but in general intrinsic characteristics of VPP are worsened due to the chemical interaction between active phase and support. Moreover all these works deal with the supportation of VPP; on the contrary, my work is an attempt to build-up a V/P/O active layer on the surface of a zirconia support by thermal treatment of a precursor obtained by impregnation of a V5+ salt and of H3PO4. In-situ Raman analysis during the thermal treatment, as well as reactivity tests are used to investigate the parameters that may influence the generation of the active phase. Part B is devoted to the study of o-xylene oxidation of phthalic anhydride; industrially, the reaction is carried out in gas-phase using as catalysts a supported system formed by V2O5 on TiO2. The V/Ti/O system is quite complex; different vanadium species could be present on the titania surface, as a function of the vanadium content and of the titania surface area: (i) V species which is chemically bound to the support via oxo bridges (isolated V in octahedral or tetrahedral coordination, depending on the hydration degree), (ii) a polymeric species spread over titania, and (iii) bulk vanadium oxide, either amorphous or crystalline. The different species could have different catalytic properties therefore changing the relative amount of V species can be a way to optimize the catalytic performances of the system. For this reason, samples containing increasing amount of vanadium were prepared and tested in the oxidation of o-xylene, with the aim of find a correlations between V/Ti/O catalytic activity and the amount of the different vanadium species. The second part deals with the role of a gas-phase promoter. Catalytic surface can change under working conditions; the high temperatures and a different gas-phase composition could have an effect also on the formation of different V species. Furthermore, in the industrial practice, the vanadium oxide-based catalysts need the addition of gas-phase promoters in the feed stream, that although do not have a direct role in the reaction stoichiometry, when present leads to considerable improvement of catalytic performance. Starting point of my investigation is the possibility that steam, a component always present in oxidation reactions environment, could cause changes in the nature of catalytic surface under reaction conditions. For this reason, the dynamic phenomena occurring at the surface of a 7wt% V2O5 on TiO2 catalyst in the presence of steam is investigated by means of Raman spectroscopy. Moreover a correlation between the amount of the different vanadium species and catalytic performances have been searched. Finally, the role of dopants has been studied. The industrial V/Ti/O system contains several dopants; the nature and the relative amount of promoters may vary depending on catalyst supplier and on the technology employed for the process, either a single-bed or a multi-layer catalytic fixed-bed. Promoters have a quite remarkable effect on both activity and selectivity to phthalic anhydride. Their role is crucial, and the proper control of the relative amount of each component is fundamental for the process performance. Furthermore, it can not be excluded that the same promoter may play different role depending on reaction conditions (T, composition of gas phase..). The reaction network of phthalic anhydride formation is very complex and includes several parallel and consecutive reactions; for this reason a proper understanding of the role of each dopant cannot be separated from the analysis of the reaction scheme. One of the most important promoters at industrial level, which is always present in the catalytic formulations is Cs. It is known that Cs plays an important role on selectivity to phthalic anhydride, but the reasons of this phenomenon are not really clear. Therefore the effect of Cs on the reaction scheme has been investigated at two different temperature with the aim of evidencing in which step of the reaction network this promoter plays its role.
Resumo:
Die Synthese funktionalisierter Polyorganosiloxan-µ-Netzwerke (Rh = 5 30 nm) gelingt durch Polycokondensation von Alkoxysilanen. Die entstehenden sphärischen Teilchen sind in unpolaren organischen Lösungsmitteln partikulär dispergierbar. Durch die sequentielle Zugabe der Silanmonomere können Kern-Schale-Partikel mit unterschiedlichen Teilchenarchitekturen realisiert werden. In der vorliegenden Arbeit wird p-Chlormethylphenyltrimethoxysilan als funktionalisiertes Monomer verwendet, um den µ-Netzwerken durch eine anschließende Quaternisierung der Chlorbenzylgruppen mit Dimethylaminoethanol amphiphile Eigenschaften zu verleihen. Durch den Kern-Schale-Aufbau der Partikel sind die hydrophilen Bereiche im Kugelinneren von der hydrophoben äußeren Schale separiert, was unerläßlich für die Verwendung der Partikel zur Verkapselung wasserlöslicher Substanzen ist.So können in den amphiphilen µ-Netzwerken beispielsweise wasserlösliche Farbstoffe verkapselt werden. Diese diffundieren sowohl aus Lösung als auch aus dem Festkörper in das geladene Partikelinnere und werden dort angereichert. Es wird eine Abhängigkeit der Farbstoffbeladung vom Quaternisierungsgrad gefunden, wobei die Anzahl an verkapselten Farbstoffmolekülen mit dem Quaternisierungsgrad zunimmt.Weiterhin können amphiphile µ-Gelpartikel auch als molekulare Nanoreaktoren zur Synthese von Edelmetallkolloiden verwendet werden, die in den Netzwerken topologisch gefangen sind. Hierzu werden zuerst Metallionen im Kugelinneren verkapselt und anschließend reduziert, wobei das Kolloidwachstum durch den wohldefinierten Reaktionsraum gesteuert wird. Neben Gold- und Palladiumkolloiden können auf diese Weise beispielsweise auch Silberkolloide in den Kernen von µ-Netzwerken hergestellt werden.
Resumo:
Diese Arbeit legt eine neue Methode zur Simulation derDynamik vonPolymeren in verdünnter und halbverdünnterLösung vor. Die Effizienz der Methode und derAnstieg der Computerleistung in den letzten Jahren erlaubenes, weitaus komplexere Systeme als bisher zu betrachten.Die neue Methode modelliert die Polymere als Kugel-Feder-Ketten, die mittels Molekulardynamik simuliertwerden. Die Flüssigkeit wird durch die numerischeLösung der Kontinuitätsgleichungund der Navier-Stokes-Gleichung mit derLattice-Boltzmann-Methodemodelliert. Die Flüssigkeit wird über eineReibungskraft an die Monomere des Kugel-Feder-Modellsgekoppelt. Die Methode wird auf das Problem einer flexiblen EinzelketteimLösungsmittel angewendet. Der Vergleich derErgebnisse mit einer existierenden reinenMolekulardynamik-Simulationergibt Übereinstimmung innerhalb weniger Prozent,während die neueMethode um etwa einen Faktor 20 weniger CPU-Zeitbenötigt. Eine semiflexible Kette zeigt völliganderes Verhalten: Die Hydrodynamik spielt im Gegensatz zur flexiblen Ketteeineuntergeordnete Rolle. Simulationen von halbverdünntenLösungen flexibler Kettenbestehend aus insgesamt 50000 Monomeren zeigen zum erstenMal direkt dieAbschirmung sowohl der Volumenausschluss-Wechselwirkung alsauch derHydrodynamik.