930 resultados para MISSENSE MUTATIONS
Resumo:
OBJECTIVE: Wilson's disease (WD) is an inborn error of metabolism caused by abnormalities of the copper-transporting protein encoding gene ATP7B. In this study, we examined ATP7B for mutations in a group of patients living in southern Brazil. METHODS: 36 WD subjects were studied and classified according to their clinical and epidemiological data. In 23 subjects the ATP7B gene was analyzed. RESULTS: Fourteen distinct mutations were detected in at least one of the alleles. The c.3207C>A substitution at exon 14 was the most common mutation (allelic frequency=37.1%) followed by the c.3402delC at exon 15 (allelic frequency=11.4%). The mutations c.2018-2030del13 at exon 7 and c.4093InsT at exon 20 are being reported for the first time. CONCLUSION: The c.3207C>A substitution at exon 14, was the most common mutation, with an allelic frequency of 37.1%. This mutation is the most common mutation described in Europe.
Resumo:
Due to the growing attention of consumers towards their food, improvement of quality of animal products has become one of the main focus of research. To this aim, the application of modern molecular genetics approaches has been proved extremely useful and effective. This innovative drive includes all livestock species productions, including pork. The Italian pig breeding industry is unique because needs heavy pigs slaughtered at about 160 kg for the production of high quality processed products. For this reason, it requires precise meat quality and carcass characteristics. Two aspects have been considered in this thesis: the application of the transcriptome analysis in post mortem pig muscles as a possible method to evaluate meat quality parameters related to the pre mortem status of the animals, including health, nutrition, welfare, and with potential applications for product traceability (chapters 3 and 4); the study of candidate genes for obesity related traits in order to identify markers associated with fatness in pigs that could be applied to improve carcass quality (chapters 5, 6, and 7). Chapter three addresses the first issue from a methodological point of view. When we considered this issue, it was not obvious that post mortem skeletal muscle could be useful for transcriptomic analysis. Therefore we demonstrated that the quality of RNA extracted from skeletal muscle of pigs sampled at different post mortem intervals (20 minutes, 2 hours, 6 hours, and 24 hours) is good for downstream applications. Degradation occurred starting from 48 h post mortem even if at this time it is still possible to use some RNA products. In the fourth chapter, in order to demonstrate the potential use of RNA obtained up to 24 hours post mortem, we present the results of RNA analysis with the Affymetrix microarray platform that made it possible to assess the level of expression of more of 24000 mRNAs. We did not identify any significant differences between the different post mortem times suggesting that this technique could be applied to retrieve information coming from the transcriptome of skeletal muscle samples not collected just after slaughtering. This study represents the first contribution of this kind applied to pork. In the fifth chapter, we investigated as candidate for fat deposition the TBC1D1 [TBC1 (tre-2/USP6, BUB2, cdc16) gene. This gene is involved in mechanisms regulating energy homeostasis in skeletal muscle and is associated with predisposition to obesity in humans. By resequencing a fragment of the TBC1D1 gene we identified three synonymous mutations localized in exon 2 (g.40A>G, g.151C>T, and g.172T>C) and 2 polymorphisms localized in intron 2 (g.219G>A and g.252G>A). One of these polymorphisms (g.219G>A) was genotyped by high resolution melting (HRM) analysis and PCR-RFLP. Moreover, this gene sequence was mapped by radiation hybrid analysis on porcine chromosome 8. The association study was conducted in 756 performance tested pigs of Italian Large White and Italian Duroc breeds. Significant results were obtained for lean meat content, back fat thickness, visible intermuscular fat and ham weight. In chapter six, a second candidate gene (tribbles homolog 3, TRIB3) is analyzed in a study of association with carcass and meat quality traits. The TRIB3 gene is involved in energy metabolism of skeletal muscle and plays a role as suppressor of adipocyte differentiation. We identified two polymorphisms in the first coding exon of the porcine TRIB3 gene, one is a synonymous SNP (c.132T> C), a second is a missense mutation (c.146C> T, p.P49L). The two polymorphisms appear to be in complete linkage disequilibrium between and within breeds. The in silico analysis of the p.P49L substitution suggests that it might have a functional effect. The association study in about 650 pigs indicates that this marker is associated with back fat thickness in Italian Large White and Italian Duroc breeds in two different experimental designs. This polymorphisms is also associated with lactate content of muscle semimembranosus in Italian Large White pigs. Expression analysis indicated that this gene is transcribed in skeletal muscle and adipose tissue as well as in other tissues. In the seventh chapter, we reported the genotyping results for of 677 SNPs in extreme divergent groups of pigs chosen according to the extreme estimated breeding values for back fat thickness. SNPs were identified by resequencing, literature mining and in silico database mining. analysis, data reported in the literature of 60 candidates genes for obesity. Genotyping was carried out using the GoldenGate (Illumina) platform. Of the analyzed SNPs more that 300 were polymorphic in the genotyped population and had minor allele frequency (MAF) >0.05. Of these SNPs, 65 were associated (P<0.10) with back fat thickness. One of the most significant gene marker was the same TBC1D1 SNPs reported in chapter 5, confirming the role of this gene in fat deposition in pig. These results could be important to better define the pig as a model for human obesity other than for marker assisted selection to improve carcass characteristics.
Resumo:
In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.
Resumo:
The horizontal and vertical system neurons (HS and VS cells) are part of a conserved set of lobula plate giant neurons (LPGNs) in the optic lobes of the adult brain. Structure and physiology of these cells are well known, predominantly from studies in larger Dipteran flies. Our knowledge about the ontogeny of these cells is limited and stems predominantly from laser ablation studies in larvae of the house fly Musca domestica. These studies suggested that the HS and VS cells stem from a single precursor, which, at least in Musca, has not yet divided in the second larval instar. A regulatory mutation (In(1)omb[H31]) in the Drosophila gene optomotor-blind (omb) leads to the selective loss of the adult HS and VS cells. This mutation causes a transient reduction in omb expression in what appears to be the entire optic lobe anlage (OLA) late in embryogenesis. Here, I have reinitiated the laser approach with the goal of identifying the presumptive embryonic HS/VS precursor cell in Drosophila. The usefulness of the laser ablation approach which has not been applied, so far, to cells lying deep within the Drosophila embryo, was first tested on two well defined embryonic sensory structures, the olfactory antenno-maxillary complex (AMC) and the light-sensitive Bolwing´s organ (BO). In the case of the AMC, the efficiency of the ablation procedure was demonstrated with a behavioral assay. When both AMCs were ablated, the response to an attractive odour (n-butanol) was clearly reduced. Interestingly, the larvae were not completely unresponsive but had a delayed response kinetics, indicating the existence of a second odour system. BO will be a useful test system for the selectivity of laser ablation when used at higher spatial resolution. An omb-Gal4 enhancer trap line was used to visualize the embryonic OLA by GFP fluorescence. This fluorescence allowed to guide the laser beam to the relevant structure within the embryo. The success of the ablations was monitored in the adult brain via the enhancer trap insertion A122 which selectively visualizes the HS and VS cell bodies. Due to their tight clustering, individual cells could not be identified in the embryonic OLA by conventional fluorescence microscopy. Nonetheless, systematic ablation of subdomains of the OLA allowed to localize the presumptive HS/VS precursor to a small area within the OLA, encompassing around 10 cells. Future studies at higher resolution should be able to identify the precursor as (an) individual cell(s). Most known lethal omb alleles do not complement the HS/VS phenotype of the In(1)omb[H31] allele. This is the expected behaviour of null alleles. Two lethal omb alleles that had been isolated previously by non-complementation of the omb hypomorphic allele bifid, have been reported, however, to complement In(1)omb[H31]. This report was based on low resolution paraffin histology of adult heads. Four mutations from this mutagenesis were characterized here in more detail (l(1)omb[11], l(1)omb[12], l(1)omb[13], and l(1)omb[15]). Using A122 as marker for the adult HS and VS cells, I could show, that only l(1)omb[11] can partly complement the HS/VS cell phenotype of In(1)omb[H31]. In order to identify the molecular lesions in these mutants, the exons and exon/intron junctions were sequenced in PCR-amplified material from heterozygous flies. Only in two mutants could the molecular cause for loss of omb function be identified: in l(1)omb[13]), a missense mutation causes the exchange of a highly conserved residue within the DNA-binding T-domain; in l(1)omb[15]), a nonsense mutation causes a C-terminal truncation. In the other two mutants apparently regulatory regions or not yet identified alternative exons are affected. To see whether mutant OMB protein in the missense mutant l(1)omb[13] is affected in DNA binding, electrophoretic shift assays on wildtype and mutant T-domains were performed. They revealed that the mutant no longer is able to bind the consensus palindromic T-box element.
Resumo:
The establishment of appropriate synapses between neurons and their target cells is an essential requirement for the formation of functional neuronal circuits. However, there is very little insight into the mechanisms underlying de novo formation of synapses and synaptic terminals. To identify novel genes involved in signalling or structural aspects of these processes I capitalised on possibilities provided by the model organism Drosophila. Thus, I contributed to a screen of a collection of third chromosomal mutations (Salzberg et al., 1997, Genetics 147, 1723ff.) selecting those mutant strains displaying structural defects of Drosophila neuromuscular junctions (NMJ). Carrying out genetic mapping experiments, I could assign 7 genes to interesting candidate mutations. All 7 mutations selected in this process cause size alterations of the embryonic NMJ, and one shows additional disturbances in the distribution of synaptic markers. 4 of these turned out to be transcription factors, not falling into the remit of this project. Only for one of these, the neuronal transcription factor Castor, I could show that its overgrown mutant NMJ phenotype is due to an increase in the number of motorneurons. The remaining genes encode a potential nitrophenylphosphatase, the translation initiation factor eIF4AIII, and a novel protein Waharan. Unfortunately, the nitophenylphosphatase gene was identified too late to carry out functional studies in the context of this project, but potential roles are discussed. eIF4AIII promotes NMJ size tempting to speculate that local translation at the NMJ is affected. I found that the synaptic scaffolding molecule Discs large (Dlg; orthologue of PSD95) is upregulated at eIF4AIII mutant NMJs. Targeted upregulation of Dlg can not mimic the eIF4AIII mutant phenotype, but dlg mutations suppress it. Therefore, Dlg function is required but not sufficient in this context. My findings are discussed in detail, pointing out future directions. The main focus of this work is the completely novel gene waharan (wah), an orthologue of the human gene KIAA1267 encoding a big brain protein of likewise unknown structure and function. My studies show that mutations or RNAi knock-down of wah cause NMJ overgrowth and reveal additional crucial roles in the patterning of wing imginal discs. RNAi studies suggest Wah to be required pre- and postsynaptically at NMJs and, consistently, wah is transcribed in the nervous system and muscles. Anti-Wah antisera were produced but could no longer be tested here, but preliminary studies with newly generated HA-targeted constructs suggest that Wah localises at NMJs and in neuronal nuclei. In silico analyses predict Wah to be structurally related to the Rad23-family of proteins, likely to target ubiquitinated proteins to the proteasome for degradation (Chen et al., 2002, Mol Cell Biol 22, 4902ff.) . In agreement with this prediction, poly-ubiquitinated proteins were found to accumulate in the absence of wah function, and wah-like mutant phenotypes were induced in NMJs and wing discs by knocking down proteasome function. My analysis further revealed that poly-ubiquitinated proteins are reduced in nuclei of wah mutant neurons and muscles, suggesting that Wah may play additional roles in ubiquitin-mediated nuclear import. Taken together, this study has uncovered a number of interesting candidate genes required for the de novo formation of Drosophila NMJs. 3 of these genes fell into the focus of this project. As discussed in detail, discovery of these genes and insights gained into their function have high potential to be translatable into vertebrate systems.
Resumo:
I disturbi dello spettro autistico (DSA) ed il ritardo mentale (RM) sono caratterizzati da un’eziologia genetica complessa ed eterogenea. Grazie ai recenti sviluppi nella ricerca genomica, è stato possibile dimostrare il ruolo di numerose copy number variants (CNVs) nella patogenesi di questi disturbi, anche se nella maggior parte dei casi l’eziologia rimane ancora sconosciuta. Questo lavoro riguarda l’identificazione e la caratterizzazione dei CNVs in famiglie con DSA e RM. E’ stata studiata una microdelezione in 7q31 che coinvolge i geni IMMP2L e DOCK4, trasmessa dalla madre con dislessia a due figli con autismo ed una figlia con dislessia. Nella stessa famiglia segrega una seconda microdelezione in 2q14 che inattiva il gene CNTNAP5 ed è trasmessa dal padre (con tratti autistici) ai due figli con autismo. Abbiamo quindi ipotizzato che i geni DOCK4 e CNTNAP5 potessero essere implicati, rispettivamente, nella suscettibilità a dislessia e DSA. Lo screening di numerosi individui affetti ha supportato la nostra ipotesi, con l’identificazione di una nuova microdelezione di DOCK4 che segrega con la dislessia, e 3 nuove varianti missenso in CNTNAP5 in individui con autismo. Dall’analisi genomica comparativa su array (aCGH) di individui con RM, è stata identificata una delezione nella regione 7q31.32, che coinvolge il gene CADPS2, in due fratelli con RM e tratti autistici, probabilmente ereditata dalla madre. Lo screening di mutazione di questo gene in individui con autismo o RM, ha portato all’identificazione di 3 varianti non sinonime, assenti nei controlli, ed ereditate per via materna. Poiché CADPS2 risiede in una regione genomica che contiene loci soggetti ad imprinting, abbiamo ipotizzato che il gene CADPS2 possa essere anch’esso caratterizzato da imprinting, con espressione monoallelica materna. Lo studio di espressione di CADPS2 in cellule del sangue ha avvalorato questa ipotesi, implicando perciò CADPS2 come un nuovo gene di suscettibilità per il RM e DSA.
Resumo:
The clonal distribution of BRAFV600E in papillary thyroid carcinoma (PTC) has been recently debated. No information is currently available about precursor lesions of PTCs. My first aim was to establish whether the BRAFV600E mutation occurs as a subclonal event in PTCs. My second aim was to screen BRAF mutations in histologically benign tissue of cases with BRAFV600E or BRAFwt PTCs in order to identify putative precursor lesions of PTCs. Highly sensitive semi-quantitative methods were used: Allele Specific LNA quantitative PCR (ASLNAqPCR) and 454 Next-Generation Sequencing (NGS). For the first aim 155 consecutive formalin-fixed and paraffin-embedded (FFPE) specimens of PTCs were analyzed. The percentage of mutated cells obtained was normalized to the estimated number of neoplastic cells. Three groups of tumors were identified: a first had a percentage of BRAF mutated neoplastic cells > 80%; a second group showed a number of BRAF mutated neoplastic cells < 30%; a third group had a distribution of BRAFV600E between 30-80%. The large presence of BRAFV600E mutated neoplastic cell sub-populations suggests that BRAFV600E may be acquired early during tumorigenesis: therefore, BRAFV600E can be heterogeneously distributed in PTC. For the second aim, two groups were studied: one consisted of 20 cases with BRAFV600E mutated PTC, the other of 9 BRAFwt PTCs. Seventy-five and 23 histologically benign FFPE thyroid specimens were analyzed from the BRAFV600E mutated and BRAFwt PTC groups, respectively. The screening of BRAF mutations identified BRAFV600E in “atypical” cell foci from both groups of patients. “Unusual” BRAF substitutions were observed in histologically benign thyroid associated with BRAFV600E PTCs. These mutations were very uncommon in the group with BRAFwt PTCs and in BRAFV600E PTCs. Therefore, lesions carrying BRAF mutations may represent “abortive” attempts at cancer development: only BRAFV600E boosts neoplastic transformation to PTC. BRAFV600E mutated “atypical foci” may represent precursor lesions of BRAFV600E mutated PTCs.
Resumo:
Specific language impairment (SLI) is a complex neurodevelopmental disorder defined as an unexpected failure to develop normal language abilities for no obvious reason. Copy number variants (CNVs) are an important source of variation in the susceptibility to neuropsychiatric disorders. Therefore, a CNV study within SLI families was performed to investigate the role of structural variants in SLI. Among the identified CNVs, we focused on CNVs on chromosome 15q11-q13, recurrently observed in neuropsychiatric conditions, and a homozygous exonic microdeletion in ZNF277. Since this microdeletion falls within the AUTS1 locus, a region linked to autism spectrum disorders (ASD), we investigated a potential role of ZNF277 in SLI and ASD. Frequency data and expression analysis of the ZNF277 microdeletion suggested that this variant may contribute to the risk of language impairments in a complex manner, that is independent of the autism risk previously described in this region. Moreover, we identified an affected individual with a dihydropyrimidine dehydrogenase (DPD) deficiency, caused by compound heterozygosity of two deleterious variants in the gene DPYD. Since DPYD represents a good candidate gene for both SLI and ASD, we investigated its involvement in the susceptibility to these two disorders, focusing on the splicing variant rs3918290, the most common mutation in the DPD deficiency. We observed a higher frequency of rs3918290 in SLI cases (1.2%), compared to controls (~0.6%), while no difference was observed in a large ASD cohort. DPYD mutation screening in 4 SLI and 7 ASD families carrying the splicing variant identified six known missense changes and a novel variant in the promoter region. These data suggest that the combined effect of the mutations identified in affected individuals may lead to an altered DPD activity and that rare variants in DPYD might contribute to a minority of cases, in conjunction with other genetic or non-genetic factors.
Resumo:
Background. Hhereditary cystic kidney diseases are a heterogeneous spectrum of disorders leading to renal failure. Clinical features and family history can help to distinguish the recessive from dominant diseases but the differential diagnosis is difficult due the phenotypic overlap. The molecular diagnosis is often the only way to characterize the different forms. A conventional molecular screening is suitable for small genes but is expensive and time-consuming for large size genes. Next Generation Sequencing (NGS) technologies enables massively parallel sequencing of nucleic acid fragments. Purpose. The first purpose was to validate a diagnostic algorithm useful to drive the genetic screening. The second aim was to validate a NGS protocol of PKHD1 gene. Methods. DNAs from 50 patients were submitted to conventional screening of NPHP1, NPHP5, UMOD, REN and HNF1B genes. 5 patients with known mutations in PKHD1 were submitted to NGS to validate the new method and a not genotyped proband with his parents were analyzed for a diagnostic application. Results. The conventional molecular screening detected 8 mutations: 1) the novel p.E48K of REN in a patient with cystic nephropathy, hyperuricemia, hyperkalemia and anemia; 2) p.R489X of NPHP5 in a patient with Senior Loken Syndrome; 3) pR295C of HNF1B in a patient with renal failure and diabetes.; 4) the NPHP1 deletion in 3 patients with medullar cysts; 5) the HNF1B deletion in a patient with medullar cysts and renal hypoplasia and in a diabetic patient with liver disease. The NGS of PKHD1 detected all known mutations and two additional variants during the validation. The diagnostic NGS analysis identified the patient’s compound heterozygosity with a maternal frameshift mutation and a paternal missense mutation besides a not transmitted paternal missense mutation. Conclusions. The results confirm the validity of our diagnostic algorithm and suggest the possibility to introduce this NGS protocol to clinical practice.
Resumo:
In chronic myeloid leukemia and Philadelphia-positive acute lymphoblastic leukemia patients resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL kinase domain mutation status is an essential component of the therapeutic decision algorithm. The recent development of Ultra-Deep Sequencing approach (UDS) has opened the way to a more accurate characterization of the mutant clones surviving TKIs conjugating assay sensitivity and throughput. We decided to set-up and validated an UDS-based for BCR-ABL KD mutation screening in order to i) resolve qualitatively and quantitatively the complexity and the clonal structure of mutated populations surviving TKIs, ii) study the dynamic of expansion of mutated clones in relation to TKIs therapy, iii) assess whether UDS may allow more sensitive detection of emerging clones, harboring critical 2GTKIs-resistant mutations predicting for an impending relapse, earlier than SS. UDS was performed on a Roche GS Junior instrument, according to an amplicon sequencing design and protocol set up and validated in the framework of the IRON-II (Interlaboratory Robustness of Next-Generation Sequencing) International consortium.Samples from CML and Ph+ ALL patients who had developed resistance to one or multiple TKIs and collected at regular time-points during treatment were selected for this study. Our results indicate the technical feasibility, accuracy and robustness of our UDS-based BCR-ABL KD mutation screening approach. UDS was found to provide a more accurate picture of BCR-ABL KD mutation status, both in terms of presence/absence of mutations and in terms of clonal complexity and showed that BCR-ABL KD mutations detected by SS are only the “tip of iceberg”. In addition UDS may reliably pick 2GTKIs-resistant mutations earlier than SS in a significantly greater proportion of patients.The enhanced sensitivity as well as the possibility to identify low level mutations point the UDS-based approach as an ideal alternative to conventional sequencing for BCR-ABL KD mutation screening in TKIs-resistant Ph+ leukemia patients
Resumo:
Die nahe verwandten T-box Transkriptionsfaktoren TBX2 und TBX3 werden in zahlreichen humanen Krebsarten überexprimiert, insbesondere in Brustkrebs und Melanomen. Die Überexpression von TBX2 und TBX3 hat verschiedene zelluläre Effekte, darunter die Unterdrückung der Seneszenz, die Förderung der Epithelialen-Mesenchymalen Transition sowie invasive Zellmotilität. Im Gegensatz dazu führt ein Funktionsverlust von TBX3 und der meisten anderen humanen T-box-Gene zu haploinsuffizienten Entwicklungsdefekten. Durch Sequenzierung des Exoms von Brustkrebsproben identifizierten Stephens et al. fünf verschiedene Mutationen in TBX3, welche allesamt die DNA-bindende T-box-Domäne betrafen. Die In-Frame-Deletion N212delN wurde zweimal gefunden. Aus der Anhäufung der Mutationen innerhalb der T-box-Domäne wurde geschlossen, dass TBX3 bei Brustkrebs ein Treibergen ist. Da Mutationen innerhalb der T-box-Domäne im Allgemeinen zu einem Funktionsverlust führen, aber die onkogene Aktivität von TBX3 meist auf eine Überexpression zurückzuführen ist, wurden die potentiellen Treibermutationen hinsichtlich einer verminderten oder gesteigerten TBX3-Funktion geprüft. Getestet wurden zwei In-Frame Deletionen, eine Missense- sowie eine Frameshift-Mutante bezüglich der DNA-Bindung in vitro und der Zielgen-Repression in Zellkultur. Zusätzlich wurde eine in silico Analyse der im The Cancer Genome Atlas (TCGA) gelisteten somatischen TBX-Brustkrebsmutationen durchgeführt. Sowohl die experimentelle als auch die in silico Analyse zeigten, dass die untersuchten Mutationen vorwiegend zum Verlust der TBX3-Funktion führen. Um den Mechanismus der Genrepression durch TBX3 besser zu verstehen, wurden weitere TBX3-Mutanten bezüglich ihrer Wirkung auf die p21-Promotoraktivität (p21-Luc-Reporter und endogene p21-Expression) analysiert. Wildtypische p21-Luc-Repression zeigten die zwei Mutationen S674A (Phosphorylierung) und D275K (SUMOylierung), welche posttranslationale Modifikationen verhindern, sowie die Interaktion mit dem Tumorsuppressor Rb1 unterbindende M302A/V304A-Mutation. Erstaunlicherweise war die endogene p21-Repression dieser Mutanten stärker als die des wildtypischen TBX3-Proteins. Alle drei Mutationen führten zu einer Stabilisierung des TBX3-Proteins. Die ursprünglich in Patienten mit Ulna-Mamma Syndrom identifizierte, DNA-bindungsdefekte Y149S-Mutante konnte weder p21-Luc noch endogenes p21 reprimieren. Mutationen in potentiellen Interaktionsdomänen für die Bindung der Co-Repressoren Groucho und C-terminalem Bindeprotein zeigten sowohl auf p21-Luc als auch auf endogenes p21-Gen wildtypische Repressoraktivität, so dass diese Co-Repressoren in COS-7-Zellen wahrscheinlich nicht an der Repression dieses Gens beteiligt sind. Da TBX2 und TBX3 interessante Ziele zur direkten Krebsbekämpfung darstellen, sollte ein zelluläres Reportersystem zur Identifikation TBX2-inhibierender, pharmakologisch aktiver Substanzen etabliert werden. Dazu sollte eine stabile Zelllinie mit vom p21-Promotor reguliertem d2EGFP-Reporter und Doxyzyklin-induzierbarem TBX2-Protein erzeugt werden, da ektopische Expression von TBX2 genetische Instabilität und Toxizität induzieren kann. In dieser Zelllinie sollte die TBX2-Expression zur Reduktion der d2EGFP-Fluoreszenz führen. Zur Erzeugung der Zelllinie wurden die folgenden drei Konstrukte Schritt-für-Schritt stabil in das Genom der Zielzelllinie COS-7 integriert: pEF1alpha-Tet3G, pTRE3G-TBX2 und p21-d2EGFP. Während die Herstellung der doppelt stabilen COS-7-Zelllinie gelang, scheiterte die Herstellung der dreifach stabilen Zelllinie.
Resumo:
An autosomal dominant form of isolated GH deficiency (IGHD II) can result from heterozygous splice site mutations that weaken recognition of exon 3 leading to aberrant splicing of GH-1 transcripts and production of a dominant-negative 17.5-kDa GH isoform. Previous studies suggested that the extent of missplicing varies with different mutations and the level of GH expression and/or secretion. To study this, wt-hGH and/or different hGH-splice site mutants (GH-IVS+2, GH-IVS+6, GH-ISE+28) were transfected in rat pituitary cells expressing human GHRH receptor (GC-GHRHR). Upon GHRH stimulation, GC-GHRHR cells coexpressing wt-hGH and each of the mutants displayed reduced hGH secretion and intracellular GH content when compared with cells expressing only wt-hGH, confirming the dominant-negative effect of 17.5-kDa isoform on the secretion of 22-kDa GH. Furthermore, increased amount of 17.5-kDa isoform produced after GHRH stimulation in cells expressing GH-splice site mutants reduced production of endogenous rat GH, which was not observed after GHRH-induced increase in wt-hGH. In conclusion, our results support the hypothesis that after GHRH stimulation, the severity of IGHD II depends on the position of splice site mutation leading to the production of increasing amounts of 17.5-kDa protein, which reduces the storage and secretion of wt-GH in the most severely affected cases. Due to the absence of GH and IGF-I-negative feedback in IGHD II, a chronic up-regulation of GHRH would lead to an increased stimulatory drive to somatotrophs to produce more 17.5-kDa GH from the severest mutant alleles, thereby accelerating autodestruction of somatotrophs in a vicious cycle.
Resumo:
Severe hereditary coagulation factor XIII deficiency is a rare homozygous bleeding disorder affecting one person in every two million individuals. In contrast, heterozygous factor XIII deficiency is more common, but usually not associated with severe hemorrhage such as intracranial bleeding or hemarthrosis. In most cases, the disease is caused by F13A gene mutations. Causative mutations associated with the F13B gene are rarer.
Resumo:
Duchenne muscular dystrophy (DMD) is a hereditary X-linked recessive disorder affecting the synthesis of dystrophin, a protein essential for structural stability in muscle. Dystrophin also occurs in the central nervous system, particularly in the neocortex, hippocampus and cerebellum. Quantitative metabolic analysis by localized (1) H MRS was performed in the cerebellum (12 patients and 15 controls) and a temporo-parietal location (eight patients and 15 controls) in patients with DMD and healthy controls to investigate possible metabolic differences. In addition, the site of individual mutations on the dystrophin gene was analyzed and neuropsychological cognitive functions were examined. Cognitive deficits in the patient group were found in line with earlier investigations, mainly concerning verbal short-term memory, visuo-spatial long-term memory and verbal fluency, but also the full-scale IQ. Causal mutations were identified in all patients with DMD. Quantitative MRS showed consistent choline deficits, in both cerebellar white matter and temporo-parietal cortex, as well as small, but significant, metabolic abnormalities for glutamate and total N-acetyl compounds in the temporo-parietal region. Compartment water analysis did not reveal any abnormalities. In healthy subjects, choline levels were age related in the cerebellum. The choline deficit contrasts with earlier findings in DMD, where a surplus of choline was postulated for the cerebellum. In patients, total N-acetyl compounds in the temporo-parietal region were related to verbal IQ and verbal short-term memory. However, choline, the putative main metabolic abnormality, was not found to be associated with cognitive deficits. Furthermore, in contrast with the cognitive performance, the metabolic brain composition did not depend significantly on whether or not gene mutations concerned the expression of the dystrophin isoform Dp140, leading to the conclusion that the effect of the missing Dp140 isoform on cognitive performance is not mediated through the observed metabolite composition, or is caused by local effects beyond the resolution accessible to MRS investigations.