972 resultados para MAGNETOHYDRODYNAMIC TURBULENCE
Resumo:
Este trabalho foi realizado com o objetivo de avaliar o efeito da idade de touros europeus e zebuínos e do período de colheita do sêmen sobre as características físicas e morfológicas do sêmen desses animais produzido em uma central de inseminação no período de 1993 a 1999. Os dados de produção de sêmen dos touros foram agrupados em cinco classes de idade (12 a 36 meses, 37 a 60 meses, 61 a 84 meses, 85 a 108 meses e 109 a 142 meses) e quatro períodos de colheita (período 1: dezembro a fevereiro; período 2: março a maio; período 3: junho a agosto e período 4: setembro a novembro). As classes de idade determinaram diferenças significativas no volume, turbilhonamento espermático, nas anormalidades primárias, secundárias, terciárias e totais, na integridade de acrossoma e na quantidade média de doses por ejaculado, cujos valores foram maiores nos zebuínos no período 4 (setembro a outubro). As maiores porcentagens de anormalidades totais, nas duas subespécies, foram observadas nos animais mais jovens (12 a 36 meses) e nos mais velhos (109 e 142 meses). Os zebuínos mais velhos produziram sêmen mais concentrado e maiores quantidades médias de doses por ejaculado. em touros europeus, o sêmen menos concentrado e as maiores porcentagens de anormalidades espermáticas foram observadas no período 1 (dezembro a fevereiro), consequentemente, menores quantidades de doses de sêmen por ejaculado foram produzidas por essa subespécie, o que pode ter sido um efeito do estresse calórico sofrido por estes animais antes da colheita de sêmen. A idade e o período de colheita influenciam na qualidade do sêmen de touros doadores mantidos em regime de colheita para comercialização.
Resumo:
The use of Progressing Cavity Pumps (PCPs) in artificial lift applications in low deep wells is becoming more common in the oil industry, mainly, due to its ability to pump heavy oils, produce oil with large concentrations of sand, besides present high efficiency when compared to other artificial lift methods. Although this system has been widely used as an oil lift method, few investigations about its hydrodynamic behavior are presented, either experimental or numeric. Therefore, in order to increase the knowledge about the BCP operational behavior, this work presents a novel computational model for the 3-D transient flow in progressing cavity pumps, which includes the relative motion between rotor and stator, using an element based finite volume method. The model developed is able to accurately predict the volumetric efficiency and viscous looses as well as to provide detailed information of pressure and velocity fields inside the pump. In order to predict PCP performance for low viscosity fluids, advanced turbulence models were used to treat, accurately, the turbulent effects on the flow, which allowed for obtaining results consistent with experimental values encountered in literature. In addition to the 3D computational model, a simplified model was developed, based on mass balance within cavities and on simplification on the momentum equations for fully developed flow along the seal region between cavities. This simplified model, based on previous approaches encountered in literature, has the ability to predict flow rate for a given differential pressure, presenting exactness and low CPU requirements, becoming an engineering tool for quick calculations and providing adequate results, almost real-time time. The results presented in this work consider a rigid stator PCP and the models developed were validated against experimental results from open literature. The results for the 3-D model showed to be sensitive to the mesh size, such that a numerical mesh refinement study is also presented. Regarding to the simplified model, some improvements were introduced in the calculation of the friction factor, allowing the application fo the model for low viscosity fluids, which was unsuccessful in models using similar approaches, presented in previous works
Resumo:
Annular flow is the prevailing pattern in transport and energy conversion systems and therefore, one of the most important patterns in multiphase flow in ducts. The correct prediction of the pressure gradient and heat transfer coefficient is essential for optimizing the system s capacity. The objective of this work is to develop and implement a numerical algorithm capable of predicting hydrodynamic and thermal characteristics for upflow, vertical, annular flow. The numerical algorithm is then complemented with the physical modeling of phenomena that occurs in this flow pattern. These are, turbulence, entrainment and deposition and phase change. For the development of the numerical model, axial diffusion of heat and momentum is neglected. In this way the time-averaged equations are solved in their parabolic form obtaining the velocity and temperature profiles for each axial step at a time, together with the global parameters, namely, pressure gradient, mean film thickness and heat transfer coefficient, as well as their variation in the axial direction. The model is validated for the following conditions: fully-developed laminar flow with no entrainment; fully developed laminar flow with heat transfer, fully-developed turbulent flow with entrained drops, developing turbulent annular flow with entrained drops, and turbulent flow with heat transfer and phase change
Resumo:
In 1998 the first decorticator was developed in the Textile Engineering Laboratory and patented for the purpose of extracting fibres from pineapple leaves, with the financial help from CNPq and BNB. The objective of the present work was to develop an automatic decorticator different from the first one with a semiautomatic system of decortication with automatic feeding of the leaves and collection of the extracted fibres. The system is started through a command system that passes information to two engines, one for starting the beater cylinder and the other for the feeding of the leaves as well as the extraction of the decorticated fibres automatically. This in turn introduces the leaves between a knife and a beater cylinder with twenty blades (the previous one had only 8 blades). These blades are supported by equidistant flanges with a central transmission axis that would help in increasing the number of beatings of the leaves. In the present system the operator has to place the leaves on the rotating endless feeding belt and collect the extracted leaves that are being carried out through another endless belt. The pulp resulted form the extraction is collected in a tray through a collector. The feeding of the leaves as well as the extraction of the fibres is controlled automatically by varying the velocity of the cylinders. The semi-automatic decorticator basically composed of a chassis made out of iron bars (profile L) with 200cm length, 91 cm of height 68 cm of width. The decorticator weighs around 300Kg. It was observed that the increase in the number of blades from 8 to twenty in the beater cylinder reduced the turbulence inside the decorticator, which helped to improve the removal of the fibres without any problems as well as the quality of the fibres. From the studies carried out, from each leaf 2,8 to 4,5% of fibres can be extracted. This gives around 4 to 5 tons of fibres per hectare, which is more than that of cotton production per hectare. This quantity with no doubt could generate jobs to the people not only on the production of the fibres but also on their application in different areas
Resumo:
We intend to analyze how, through your own views and social practices, Xenophon composed the image of Spartans and their poliad regime during the period following the end of the 5th century to the early 4th century before BCE a time of great political turbulence in the Hellenic Poleis. In order to do so, we will use the writings in The Constitution of the Lacedaemonians, to point three elements that we believe are essential understanding of the Xenophon´s narrative: who was Xenophon and in which ways his life experiences influenced his narrative style; the idea of City, i.e., Xenophon´s idea of the Polis and how he defined it as a community of Citizens; and finally, to establish through which tools Xenophon build an image of Sparta and Spartans by way of their representations in his writings
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The use of oxygen to enrich the combustion air can be an attractive technique to increase capacity of an incinerator originally designed to operate with air, If incinerator parameters such as operation temperature, turbulence level and residence time are fixed for a certain fuel supply rate, it is possible to increase the residue consumption rate using enriched air. This paper presents the thermal analysis for operation with enriched air of an aqueous residue experimental incinerator. The auxiliary fuel was diesel oil. The theoretical results showed that there is a considerable increase in the incineration ratio up to approximately 50% of O-2 in the oxidiser. The tendency was confirmed experimentally. Thermal analysis was demonstrated to be an important tool to predict possible incinerator capacity increase. (C) 2005 Published by Elsevier Ltd.
Resumo:
This paper presents an experimental investigation of the characteristics of leak noise in plastic water-filled pipes. An experimental set-up was designed to identify the physical mechanisms of leak noise generation. Possible mechanisms include cavitation and turbulence. The experiments show that cavitation is not responsible for leak noise generation and clearly indicate that turbulence is the main mechanism, at least in the experiments conducted. An alternative experimental set-up was also designed to identify the characteristics of leak noise spectra and to investigate how the spectra are affected by the leak size and the leak flow velocity. A number of different hole sizes (leaks) starting from 1 mm diameter, increasing progressively every 0.5 mm until a size of 4 mm diameter were tested for different jet velocities and an empirical model that describes this behaviour is proposed.
Resumo:
This article analyzes the creation and development of the São Paulo police force during the early years of the republican regime. In a period of political change and turbulence, institutional upheaval (uprising of the Navy and federalist revolution), and social pressure, São Paulo's police force played an important role. As the state sought to organize the public sphere, the police force became a tool in the new government's hands. A more martial set of demands mobilized a large portion of the troops on behalf of the federal government against the Custodio de Mello uprising, and sought to defend São Paulo's borders. Despite official discourse that fomented a militarized response, São Paulo's police force found itself unable to dismiss old personnel and practices and dislodge entrenched interests.
Resumo:
The complexity of the Phenomenon of fluid flow in porous way causes a difficulty in its explicit description. Different in the cases where the flow is given through a pipe, where it is possible to measure the length and diameter of the pipe and to determine their ability to flow as a function of pressure, which is a complicated task in porous way. However, we try to approach clearly the equations used to conjecture the behavior of fluid flow in porous way. We made use of the Gambit to create a fractal geometry with the fluent we give the contour´s conditions we would want to analyze the data. The triangular mesh was created; it makes interactions with the discs of different rays, as barriers putted in the geometry. This work presents the results of a simulation with a flow of viscous fluids (oilliquid). The oil flows in a porous way constructed in 2D. The behavior evaluation of the fluid flow inside the porous way was realized with graphics, images and numerical results used for different datas analysis. The study was aimed in relation at the behavior of permeability (k) for different fractal dimensions. Taking into account the preservation of porosity and increasing the fractal distribution of the discs. The results showed that k decreases when we increase the numbers of discs, although the porosity is the same for all generations of the first simulation, in other words, the permeability decreases when we increase the fractality. Well, there are strong turbulence in the flow each time we increase the number of discs and this hinders the passage of the same to the exit. These results permitted to put in evidence how the permeability (k) is affected in a porous way with obstacles distributed in a diversified form. We also note that k decreases when we increase the pressure variation (P) within geometry. So, in front of the results and the absence of bibliographic subsidies about other theories, the work realized here can possibly by considered the unpublished form to explain and reflect on how the permeability is changed when increasing the fractal dimension in a porous way
Resumo:
In the present work are presented results from numerical simulations performed with the ANSYS-CFX (R) code. We have studied a radial diffuser flow case, which is the main academic problem used to study the flow behavior on flat plate valves. The radial flow inside the diffuser has important behavior such as the turbulence decay downstream and recirculation regions inside the valve flow channel due to boundary layer detachment. These flow structures are present in compressor reed valve configurations, influencing to a greater extent the compressor efficiency. The main target of the present paper was finding the simulation set-up (computational domain, boundary conditions and turbulence model) that better fits with experimental data published by Tabatabai and Pollard. The local flow turbulence and velocity profiles were investigated using four different turbulence models, two different boundary conditions set-up, two different computational domains and three different flow conditions (Re-in - Reynolds number at the diffuser inlet). We used the Reynolds stress (BSL); the k-epsilon; the RNG k-epsilon; and the shear stress transport (SST) k-omega turbulence models. The performed analysis and comparison of the computational results with experimental data show that the choice of the turbulence model, as well as the choice of the other computational conditions, plays an important role in the results physical quality and accuracy. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The element-free Galerkin method (EFGM) is a very attractive technique for solutions of partial differential equations, since it makes use of nodal point configurations which do not require a mesh. Therefore, it differs from FEM-like approaches by avoiding the need of meshing, a very demanding task for complicated geometry problems. However, the imposition of boundary conditions is not straightforward, since the EFGM is based on moving-least-squares (MLS) approximations which are not necessarily interpolants. This feature requires, for instance, the introduction of modified functionals with additional unknown parameters such as Lagrange multipliers, a serious drawback which leads to poor conditionings of the matrix equations. In this paper, an interpolatory formulation for MLS approximants is presented: it allows the direct introduction of boundary conditions, reducing the processing time and improving the condition numbers. The formulation is applied to the study of two-dimensional magnetohydrodynamic flow problems, and the computed results confirm the accuracy and correctness of the proposed formulation. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
The use of oxygen to enrich the oxidizer can be an attractive alternate to increase incineration rates of a combustion chamber originally designed to operate with air. For a certain fuel now rate, if some incineration parameters are held constant (as combustion chamber temperature, turbulence level, and residence time), an increase of incineration rates becomes possible with injection of oxygen. This work presents a theoretical evaluation of combustion air enrichment in a combustion chamber designed to incinerate aqueous residues using methane as fuel and air as oxidizer. Detailed chemistry was employed to predict pollutants formation. The overall process was investigated using the PSR routine from the CHEMKIN library. (C) 1999 Elsevier B.V. Ltd.
Resumo:
A new approach is proposed in this work for the treatment of boundary value problems through the Adomian's decomposition method. Although frequently claimed as accurate and having fast convergence rates, the original formulation of Adomian's method does not allow the treatment of homogeneous boundary conditions along closed boundaries. The technique here presented overcomes this difficulty, and is applied to the analysis of magnetohydrodynamic duct flows. Results are in good agreement with finite element method calculations and analytical solutions for square ducts. Therefore, new possibilities appear for the application of Adomian's method in electromagnetics.
Resumo:
A numerical scheme based on the Finite Element Method (FEM) is presented to calculate the full solution of a three-dimensional steady magnetohydrodynamic (MHD) flow with moderately high Hartmann numbers and interaction parameters. An incompressible, viscous and electrically conducting liquid-metal is considered. Assuming a low magnetic Reynolds number, the solution method solves the coupled Navier-Stokes and Maxwell's equations through the use of a penalty function method. Results are presented for Hartmann numbers in the range 10(2)-10(3).