969 resultados para Lung Diseases, Interstitial -- radiography


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 h and 24 h of exposure to benzene, toluene, ethylbenzene and xylenes (BTEX) as individual compounds and mixtures of 4 or 6 components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated use a mass balance model and came to 17, 12, 11, 9, 4 and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene and p-xylene respectively after 1 h of exposure. The EC50 decreased by a factor of four after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions were found for benzene, toluene, ethylbenzene and m-xylene at four different representative fixed concentration ratios after 1 h of exposure but lower agreement to mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable but lower quality prediction as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anthracnose and stem end rots are the main postharvest diseases affecting mangoes in Australia and limiting the shelf life of fruits whenever they are not controlled. The management of these diseases has often relied on the use of fungicide applications either as field spray treatments, postharvest dips or both. Because of concerns with continuous fungicide use, other options for the sustainable management of these diseases are needed. Field trials were conducted to assess the efficacy of three plant activators for the control of these diseases over a 2-year period on 20-year old ‘R2E2’ mango trees in north Queensland. The activators evaluated were: Bion, Kasil and Mangocote. The efficacy of these activators was compared with that of a standard industry field spray program using a combination of fungicides, as well as to un¬treated controls. Conditions favoured good development of the target diseases in both years to be able to differentiate treatment effects. Kasil as a drench was as effective as the standard fungicide program on the management of anthracnose and stem end rots. Bion as foliar sprays showed similar efficacy with its effectiveness comparable with the standard spray program. Both activators had significantly less disease incidences when compared with the untreated control. The third activator, Mangocote was not very effective in controlling the target diseases. Its effect was not significantly better than the untreated controls. The results from this 2-year study suggest that plant activators can play an effective role in mango postharvest disease management. Proper timing could reduce the number of fungicide sprays in an integrated disease management program enabling sustainable yields of quality fruits without the continuous concerns of health and environmental risks from continuous reliance on fungicide use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We review the literature on the combined association between lung cancer and two environmental exposures, asbestos exposure and smoking, and explore a Bayesian approach to assess evidence of interaction between the exposures. The meta-analysis combines separate indices of additive and multiplicative relationships and multivariate relative risk estimates. By making inferences on posterior probabilities we can explore both the form and strength of interaction. This analysis may be more informative than providing evidence to support one relation over another on the basis of statistical significance. Overall, we find evidence for a more than additive and less than multiplicative relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shelf-life of mangoes is limited by two main postharvest diseases when not consistently managed. These are anthracnose ( Colletotrichum gloeosporioides) and stem end rots ( Neofusicoccum parvum). The management of these diseases has often relied mainly on the use of fungicide applications either as field spray treatments and/or postharvest dips. Current postharvest dips are under continuous threats because of health concerns and the maximum residue levels allowed on treated fruit continuous to be reviewed and re-assessed. Research needs to keep up with the rate at which changes are occurring following some of these reviews. The recent withdrawal of carbendazin (Spinflo), as a postharvest dip being used to manage stem end rots necessitated the urgent search for a replacement fungicide to manage this disease. A study was therefore undertaken to compare the efficacy of current and potential products that could be used to fill the gap. The following products were evaluated: Carbendazin (Spinflo), Prochloraz (Sportak), Thiobendazole (TBZ) and Fludioxonil (Scholar). These products were tested both under ambient temperatures and as hot dips to identify one that was most effective. Scholar as a hot dip was the most effective product among the ones compared. It effectively controlled both anthracnose and stem end rots at highly significant levels when compared to the untreated control and even Spinflo which is being replaced. As a cold dip, it had some limited effect on anthracnose but had virtually no effect on stem end rots. Based on its performance in these experiments, the product has been recommended for rates and residue studies so that it can be registered as a hot dip for use in controlling postharvest diseases of mangoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pathogens and pests of stored grains move through complex dynamic networks linking fields, farms, and bulk storage facilities. Human transport and other forms of dispersal link the components of this network. A network model for pathogen and pest movement through stored grain systems is a first step toward new sampling and mitigation strategies that utilize information about the network structure. An understanding of network structure can be applied to identifying the key network components for pathogen or pest movement through the system. For example, it may be useful to identify a network node, such as a local grain storage facility, through which grain from a large number of fields will be accumulated and move through the network. This node may be particularly important for sampling and mitigation. In some cases more detailed information about network structure can identify key nodes that link two large sections of the network, such that management at the key nodes will greatly reduce the risk of spread between the two sections. In addition to the spread of particular species of pathogens and pests, we also evaluate the spread of problematic subpopulations, such as subpopulations with pesticide resistance. We present an analysis of stored grain pathogen and pest networks for Australia and the United States.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter provides an in-depth review of important diseases affecting avocado production throughout the world. The importance of understanding the interaction of plant pathogens with their avocado host in order for the development of disease management options is also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the process and outcomes of a five year project, which employed genetics and breeding approach for integrating disease resistance,agronomy and quality traits that enhances sustainable productivity improvement in sweet corn production. The report outlines a molecular markers based approach to introgress quantitative traits loci that are believed to contribute to resistance to downy mildew, a potentially devastating disease that threatens sweet corn and other similar crops. It also details the approach followed to integrate resistances for other major diseases such as southern rust (caused by Puccinia polysora Underw), Northern Corn Leaf Blight (Exserohilum turcicum) with improved agronomy and eating quality. The report explains the importance of heterosis (hybrid vigour) and combining ability in the development of useful sweet corn hybrids. It also explains the relevance of parental performance to predict its breeding value and the performance of its hybrids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The development of a horse vaccine against Hendra virus has been hailed as a good example of a One Health approach to the control of human disease. Although there is little doubt that this is true, it is clear from the underwhelming uptake of the vaccine by horse owners to date (approximately 10%) that realisation of a One Health approach requires more than just a scientific solution. As emerging infectious diseases may often be linked to the development and implementation of novel vaccines this presentation will discuss factors influencing their uptake; using Hendra virus in Australia as a case study. Methods: This presentation will draw on data collected from the Horse owners and Hendra virus: A Longitudinal cohort study To Evaluate Risk (HHALTER) study. The HHALTER study is a mixed methods research study comprising a two-year survey-based longitudinal cohort study and qualitative interview study with horse owners in Australia. The HHALTER study has investigated and tracked changes in a broad range of issues around early uptake of vaccination, horse owner uptake of other recommended disease risk mitigation strategies, and attitudes to government policy and disease response. Interviews provide further insights into attitudes towards risk and decision-making in relation to vaccine uptake. A combination of quantitative and qualitative data analysis will be reported. Results: Data collected from more than 1100 horse owners shortly after vaccine introduction indicated that vaccine uptake and intention to vaccinate was associated with a number of risk perception factors and financial cost factors. In addition, concerns about side effects and veterinarians refusing to treat unvaccinated horses were linked to uptake. Across the study period vaccine uptake in the study cohort increased to more than 50%, however, concerns around side effects, equine performance and breeding impacts, delays to full vaccine approvals, and attempts to mandate vaccination by horse associations and event organisers have all impacted acceptance. Conclusion: Despite being provided with a safe and effective vaccine for Hendra virus that can protect horses and break the transmission cycle of the virus to humans, Australian horse owners have been reluctant to commit to it. General issues pertinent to novel vaccines, combined with challenges in the implementation of the vaccine have led to issues of mistrust and misconception with some horse owners. Moreover, factors such as cost, booster dose schedules, complexities around perceived risk, and ulterior motives attributed to veterinarians have only served to polarise attitudes to vaccine acceptance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report provides a systematic review of the most economically damaging endemic diseases and conditions for the Australian red meat industry (cattle, sheep and goats). A number of diseases for cattle, sheep and goats have been identified and were prioritised according to their prevalence, distribution, risk factors and mitigation. The economic cost of each disease as a result of production losses, preventive costs and treatment costs is estimated at the herd and flock level, then extrapolated to a national basis using herd/flock demographics from the 2010-11 Agricultural Census by the Australian Bureau of Statistics. Information shortfalls and recommendations for further research are also specified. A total of 17 cattle, 23 sheep and nine goat diseases were prioritised based on feedback received from producer, government and industry surveys, followed by discussions between the consultants and MLA. Assumptions of disease distribution, in-herd/flock prevalence, impacts on mortality/production and costs for prevention and treatment were obtained from the literature where available. Where these data were not available, the consultants used their own expertise to estimate the relevant measures for each disease. Levels of confidence in the assumptions for each disease were estimated, and gaps in knowledge identified. The assumptions were analysed using a specialised Excel model that estimated the per animal, herd/flock and national costs of each important disease. The report was peer reviewed and workshopped by the consultants and experts selected by MLA before being finalised. Consequently, this report is an important resource that will guide and prioritise future research, development and extension activities by a variety of stakeholders in the red meat industry. This report completes Phase I and Phase II of an overall four-Phase project initiative by MLA, with identified data gaps in this report potentially being addressed within the later phases. Modelling the economic costs using a consistent approach for each disease ensures that the derived estimates are transparent and can be refined if improved data on prevalence becomes available. This means that the report will be an enduring resource for developing policies and strategies for the management of endemic diseases within the Australian red meat industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equal-channel angular extrusion (ECAE) of Ti-bearing interstitial-free (IF) steel was performed following two different routes, up to four passes, at a temperature of 300 degrees C. The ECAE led to a grain refinement to submicron size. After the second pass, the grain size attained saturation thereafter. The microstructural analysis indicated the presence of coincident-site lattice (CSL) boundaries in significant fraction, in addition to a high volume fraction of high-angle random boundaries and some low-angle boundaries after the deformation. Among the special boundaries, Sigma 3 and Sigma 13 were the most prominent ones and their fraction depended on the processing route followed. A deviation in the misorientation angle distribution from the Mackenzie distribution was noticed. The crystallographic texture after the first pass resembled that of simple shear, with the {112}, {110}, and {123} aligned to the macroscopic shear plane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pathogenesis of inflammatory rheumatic diseases, including rheumatoid arthritis (RA) and spondyloarthropathies (SpAs) such as reactive arthritis (ReA), is incompletely understood. ReA is a sterile joint inflammation, which may follow a distal infection caused by Gram-negative bacteria that have lipopolysaccharide (LPS) in their outer membrane. The functions of innate immunity that may affect the pathogenesis, prognosis and treatment of these diseases were studied in this thesis. When compared with healthy controls, whole blood monocytes of healthy subjects with previous ReA showed enhanced capacity to produce TNF, an essential proinflammatory cytokine, in response to adherent conditions (mimicking vascular endothelium made adherent by inflammatory signals) and non-specific protein kinase C stimulation. Also, blood neutrophils of these subjects showed high levels of CD11b, an important adhesion molecule, in response to adherence or LPS. Thus, high responsiveness of monocytes and neutrophils when encountering inflammatory stimuli may play a role in the pathogenesis of ReA. The results also suggested that the known risk allele for SpAs, HLA-B27, may be an additive contributor to the observed differences. The promoter polymorphisms TNF 308A and CD14 (gene for an LPS receptor component) 159T were found not to increase the risk of acute arthritis. However, all female patients who developed chronic SpA had 159T and none of them had 308A, possibly reflecting an interplay between hormonal and inflammatory signals in the development of chronic SpA. Among subjects with early RA, those having the polymorphic TLR4 +896G allele (causing the Asp299Gly change in TLR4, another component of LPS receptor) required a combination of disease-modifying antirheumatic drugs to achieve remission. It is known that rapid treatment response is essential in order to maintain the patients work ability. Hence, +896G might be a candidate marker for identifying the patients who need combination treatment. The production of vascular endothelial growth factor (VEGF), which strongly promotes vascular permeability and angiogenesis that takes place e.g. early in rheumatic joints, was induced by LPS and inhibited by interferon (IFN)-alpha in peripheral blood mononuclear cells. These long-living cells might provide a source of VEGF when stimulated by LPS and migrating to inflamed joints, and the effect of IFN-alpha may contribute to the clinical efficacy of this cytokine in inhibiting joint inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human body is in continuous contact with microbes. Although many microbes are harmless or beneficial for humans, pathogenic microbes possess a threat to wellbeing. Antimicrobial protection is provided by the immune system, which can be functionally divided into two parts, namely innate and adaptive immunity. The key players of the innate immunity are phagocytic white blood cells such as neutrophils, monocytes, macrophages and dendritic cells (DCs), which constantly monitor the blood and peripheral tissues. These cells are armed for rapid activation upon microbial contact since they express a variety of microbe-recognizing receptors. Macrophages and DCs also act as antigen presenting cells (APCs) and play an important role in the development of adaptive immunity. The development of adaptive immunity requires intimate cooperation between APCs and T lymphocytes and results in microbe-specific immune responses. Moreover, adaptive immunity generates immunological memory, which rapidly and efficiently protects the host from reinfection. Properly functioning immune system requires efficient communication between cells. Cytokines are proteins, which mediate intercellular communication together with direct cell-cell contacts. Immune cells produce inflammatory cytokines rapidly following microbial contact. Inflammatory cytokines modulate the development of local immune response by binding to cell surface receptors, which results in the activation of intracellular signalling and modulates target cell gene expression. One class of inflammatory cytokines chemokines has a major role in regulating cellular traffic. Locally produced inflammatory chemokines guide the recruitment of effector cells to the site of inflammation during microbial infection. In this study two key questions were addressed. First, the ability of pathogenic and non-pathogenic Gram-positive bacteria to activate inflammatory cytokine and chemokine production in different human APCs was compared. In these studies macrophages and DCs were stimulated with pathogenic Steptococcus pyogenes or non-pathogenic Lactobacillus rhamnosus. The second aim of this thesis work was to analyze the role of pro-inflammatory cytokines in the regulation of microbe-induced chemokine production. In these studies bacteria-stimulated macrophages and influenza A virus-infected lung epithelial cells were used as model systems. The results of this study show that although macrophages and DCs share several common antimicrobial functions, these cells have significantly distinct responses against pathogenic and non-pathogenic Gram-positive bacteria. Macrophages were activated in a nearly similar fashion by pathogenic S. pyogenes and non-pathogenic L. rhamnosus. Both bacteria induced the production of similar core set of inflammatory chemokines consisting of several CC-class chemokines and CXCL8. These chemokines attract monocytes, neutrophils, dendritic cells and T cells. Thus, the results suggest that bacteria-activated macrophages efficiently recruit other effector cells to the site of inflammation. Moreover, macrophages seem to be activated by all bacteria irrespective of their pathogenicity. DCs, in contrast, were efficiently activated only by pathogenic S. pyogenes, which induced DC maturation and production of several inflammatory cytokines and chemokines. In contrast, L. rhamnosus-stimulated DCs matured only partially and, most importantly, these cells did not produce inflammatory cytokines or chemokines. L. rhamnosus-stimulated DCs had a phenotype of "semi-mature" DCs and this type of DCs have been suggested to enhance tolerogenic adaptive immune responses. Since DCs have an essential role in the development of adaptive immune response the results suggest that, in contrast to macrophages, DCs may be able to discriminate between pathogenic and non-pathogenic bacteria and thus mount appropriate inflammatory or tolerogenic adaptive immune response depending on the microbe in question. The results of this study also show that pro-inflammatory cytokines can contribute to microbe-induced chemokine production at multiple levels. S. pyogenes-induced type I interferon (IFN) was found to enhance the production of certain inflammatory chemokines in macrophages during bacterial stimulation. Thus, bacteria-induced chemokine production is regulated by direct (microbe-induced) and indirect (pro-inflammatory cytokine-induced) mechanisms during inflammation. In epithelial cells IFN- and tumor necrosis factor- (TNF-) were found to enhance the expression of PRRs and components of cellular signal transduction machinery. Pre-treatment of epithelial cells with these cytokines prior to virus infection resulted in markedly enhanced chemokine response compared to untreated cells. In conclusion, the results obtained from this study show that pro-inflammatory cytokines can enhance microbe-induced chemokine production during microbial infection by providing a positive feedback loop. In addition, pro-inflammatory cytokines can render normally low-responding cells to high chemokine producers via enhancement of microbial detection and signal transduction.