913 resultados para Low-calorie diet
Resumo:
Herein, we provide new contribution to the mechanisms involved in keratinocytes response to hyperosmotic shock showing, for the first time, the participation of Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) activity in this event. We reported that sorbitol-induced osmotic stress mediates alterations in the phosphorylation of pivotal cytoskeletal proteins, particularly Src and cofilin. Furthermore, an increase in the expression of the phosphorylated form of LMWPTP, which was followed by an augment in its catalytic activity, was observed. Of particular importance, these responses occurred in an intracellular milieu characterized by elevated levels of reduced glutathione (GSH) and increased expression of the antioxidant enzymes glutathione peroxidase and glutathione reductase. Altogether, our results suggest that hyperosmostic stress provides a favorable cellular environment to the activation of LMWPTP, which is associated with increased expression of antioxidant enzymes, high levels of GSH and inhibition of Src kinase. Finally, the real contribution of LMWPTP in the hyperosmotic stress response of keratinocytes was demonstrated through analysis of the effects of ACP1 gene knockdown in stressed and non-stressed cells. LMWPTP knockdown attenuates the effects of sorbitol induced-stress in HaCaT cells, mainly in the status of Src kinase, Rac and STAT5 phosphorylation and activity. These results describe for the first time the participation of LMWPTP in the dynamics of cytoskeleton rearrangement during exposure of human keratinocytes to hyperosmotic shock, which may contribute to cell death.
Resumo:
Mechanically evoked reflexes have been postulated to be less sensitive to presynaptic inhibition (PSI) than the H-reflex. This has implications on investigations of spinal cord neurophysiology that are based on the T-reflex. Preceding studies have shown an enhanced effect of PSI on the H-reflex when a train of ~10 conditioning stimuli at 1 Hz was applied to the nerve of the antagonist muscle. The main questions to be addressed in the present study are if indeed T-reflexes are less sensitive to PSI and whether (and to what extent and by what possible mechanisms) the effect of low frequency conditioning, found previously for the H-reflex, can be reproduced on T-reflexes from the soleus muscle. We explored two different conditioning-to-test (C-T) intervals: 15 and 100 ms (corresponding to D1 and D2 inhibitions, respectively). Test stimuli consisted of either electrical pulses applied to the posterior tibial nerve to elicit H-reflexes or mechanical percussion to the Achilles tendon to elicit T-reflexes. The 1 Hz train of conditioning electrical stimuli delivered to the common peroneal nerve induced a stronger effect of PSI as compared to a single conditioning pulse, for both reflexes (T and H), regardless of C-T-intervals. Moreover, the conditioning train of pulses (with respect to a single conditioning pulse) was proportionally more effective for T-reflexes as compared to H-reflexes (irrespective of the C-T interval), which might be associated with the differential contingent of Ia afferents activated by mechanical and electrical test stimuli. A conceivable explanation for the enhanced PSI effect in response to a train of stimuli is the occurrence of homosynaptic depression at synapses on inhibitory interneurons interposed within the PSI pathway. The present results add to the discussion of the sensitivity of the stretch reflex pathway to PSI and its functional role.
Resumo:
Phosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influences the phosphorylation of signaling pathway mediators involved in cancer and is thus postulated to be a tumor-promoting enzyme, but neither unequivocal clinical evidence nor convincing mechanistic actions for a role of LMWPTP have been identified. In the present study, we show that LMWPTP expression is not only significantly increased in colorectal cancer (CRC), but also follows a step-wise increase in different levels of dysplasia. Chemical inhibition of LMWPTP significantly reduces CRC growth. Furthermore, downregulation of LMWPTP in CRC leads to a reduced migration ability in both 2D- and 3D-migration assays, and sensitizes tumor cells to the chemotherapeutic agent 5-FU. In conclusion, this study shows that LMWPTP is not only overexpressed in colorectal cancer, but it is correlated with the malignant potential of this cancer, suggesting that this phosphatase may act as a predictive biomaker of CRC stage and represents a rational novel target in the treatment of this disease.
Resumo:
Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).
Resumo:
Placental tissue injury is concomitant with tumor development. We investigated tumor-driven placental damage by tracing certain steps of the protein synthesis and degradation pathways under leucine-rich diet supplementation in MAC16 tumor-bearing mice. Cell signaling and ubiquitin-proteasome pathways were assessed in the placental tissues of pregnant mice, which were distributed into three groups on a control diet (pregnant control, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid) and three other groups on a leucine-rich diet (pregnant, tumor-bearing pregnant, and pregnant injected with MAC-ascitic fluid). MAC tumor growth down-regulated the cell-signaling pathways of the placental tissue and decreased the levels of IRS-1, Akt/PKB, Erk/MAPK, mTOR, p70S6K, STAT3, and STAT6 phosphorylated proteins, as assessed by the multiplex Millipore Luminex assay. Leucine supplementation maintained the levels of these proteins within the established cell-signaling pathways. In the tumor-bearing group (MAC) only, the placental tissue showed increased PC5 mRNA expression, as assessed by quantitative RT-PCR, decreased 19S and 20S protein expression, as assessed by Western blot analysis, and decreased placental tyrosine levels, likely reflecting up-regulation of the ubiquitin-proteasome pathway. Similar effects were found in the pregnant injected with MAC-ascitic fluid group, confirming that the effects of the tumor were mimicked by MAC-ascitic fluid injection. Although tumor progression occurred, the degradation pathway-related protein levels were modulated under leucine-supplementation conditions. In conclusion, tumor evolution reduced the protein expression of the cell-signaling pathway associated with elevated protein degradation, thereby jeopardizing placental activity. Under the leucine-rich diet, the impact of cancer on placental function could be minimized by improving the cell-signaling activity and reducing the proteolytic process.
Resumo:
Maternal high-fat diet (HFD) impairs hippocampal development of offspring promoting decreased proliferation of neural progenitors, in neuronal differentiation, in dendritic spine density and synaptic plasticity reducing neurogenic capacity. Notch signaling pathway participates in molecular mechanisms of the neurogenesis. The activation of Notch signaling leads to the upregulation of Hes5, which inhibits the proliferation and differentiation of neural progenitors. This study aimed to investigate the Notch/Hes pathway activation in the hippocampus of the offspring of dams fed an HFD. Female Swiss mice were fed a control diet (CD) and an HFD from pre-mating until suckling. The bodyweight and mass of adipose tissue in the mothers and pups were also measured. The mRNA and protein expression of Notch1, Hes5, Mash1, and Delta1 in the hippocampus was assessed by RT-PCR and western blotting, respectively. Dams fed the HFD and their pups had an increased bodyweight and amount of adipose tissue. Furthermore, the offspring of mothers fed the HFD exhibited an increased Hes5 expression in the hippocampus compared with CD offspring. In addition, HFD offspring also expressed increased amounts of Notch1 and Hes5 mRNA, whereas Mash1 expression was decreased. However, the expression of Delta1 did not change significantly. We propose that the overexpression of Hes5, a Notch effector, downregulates the expression of the proneural gene Mash1 in the offspring of obese mothers, delaying cellular differentiation. These results provide further evidence that an offspring's hippocampus is molecularly susceptible to maternal HFD and suggest that Notch1 signaling in this brain region is important for neuronal differentiation.
Resumo:
To evaluate p16(INK) (4a) immunoexpression in CIN1 lesions looking for differences between cases that progress to CIN2/3 maintain CIN1 diagnosis, or spontaneously regress. Seventy-four CIN1 biopsies were studied. In the follow-up, a second biopsy was performed and 28.7% showed no lesion (regression), 37.9% maintained CIN1, and 33.4% progressed to CIN2/3. Immunostaining for p16(INK) (4a) was performed in the first biopsy and it was considered positive when there was strong and diffuse staining of the basal and parabasal layers. Pearson's chi-square was used to compare the groups (p ≤ 0.05). The age of the patients was similar. There was no significant difference in p16(INK) (4a) immunoexpression in the groups, however, statistical analyses showed a significant association when only the progression and regression groups were compared (p = 0.042). Considering p16(INK) (4a) positivity and the progression to CIN2/3, the sensitivity, specificity, positive, and negative predictive values in our cohort were 45%, 75%, 47%, and 94%, respectively. We emphasize that CIN1 with p16(INK) (4a) staining was associated with lesion progression, but the sensitivity was not high. However, the negative predictive value was more reliable (94%) and p16(INK) (4a) may represent a useful biomarker that can identify CIN1 lesions that need particular attention, complementing morphology.
Resumo:
The objectives were to identify factors associated with decreased life satisfaction in community-dwelling elderly and describe such factors according to gender and age bracket. The study interviewed 2,472 elderly individuals 65 years or older without cognitive deficits suggestive of dementia, in probabilistic samples from seven Brazilian cities. All measures were self-reported except for functional performance, indicated by handgrip and gait speed. Women had more chronic diseases, worse functional performance, and greater social involvement when compared to men. The oldest participants showed worse functional performance and less social involvement when compared to the youngest. Low satisfaction was associated with three or more diseases, memory problems, low social involvement, low handgrip strength, and urinary incontinence. The authors conclude that health, functional performance, and social involvement interact with well-being, so interventions targeting these areas can favor quality of life for the elderly.
Resumo:
Low temperatures negatively impact the metabolism of orange trees, and the extent of damage can be influenced by the rootstock. We evaluated the effects of low nocturnal temperatures on Valencia orange scions grafted on Rangpur lime or Swingle citrumelo rootstocks. We exposed six-month-old plants to night temperatures of 20ºC and 8ºC under controlled conditions. After decreasing the temperature to 8ºC, there were decreases in leaf CO2 assimilation, stomatal conductance, mesophyll conductance and CO2 concentration in the chloroplasts, in plant hydraulic conductivity and in the maximum electron transport rate driven ribulose-1,5-bisphosphate (RuBP) regeneration in plants grafted on both rootstocks. However, the effects of low night temperature were more severe in plants grafted on Rangpur rootstock, which also presented reduction in the maximum rate of RuBP carboxylation and in the maximum quantum efficiency of the PSII. In general, irreversible damage due to night chilling was found in the photosynthetic apparatus of plants grafted on Rangpur lime. Low night temperatures induced similar changes in the antioxidant metabolism, preventing oxidative damage in citrus leaves on both rootstocks. As photosynthesis is linked to plant growth, our findings indicate that the rootstock may improve the performance of citrus trees in environments with low night temperatures, with Swingle rootstock improving the photosynthetic acclimation in leaves of orange plants.
Resumo:
The effects of aluminum (Al) on the activities of antioxidant enzymes and ferritin expression were studied in cell suspension cultures of two varieties of Coffea arabica, Mundo Novo and Icatu, in medium with pH at 5.8. The cells were incubated with 300 µM Al3+, and the Al speciation as Al3+ was 1.45% of the mole fraction. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST) were increased in Mundo Novo, whereas glutathione reductase (GR) and guaiacol peroxidase (GPOX) activities remained unchanged. SOD, GR, and GST activities were increased in Icatu, while CAT activity was not changed, and GPOX activity decreased. The expression of two ferritin genes (CaFer1 and CaFer2) were analyzed by Real-Time PCR. Al caused a downregulation of CaFER1 expression and no changes of CaFER2 expression in both varieties. The Western blot showed no alteration in ferritin protein levels in Mundo Novo and a decrease in Icatu. The differential enzymes responses indicate that the response to Al is variety-dependent.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
This in vitro study aimed to analyze the effect of different parameters of phototherapy with low intensity laser on the viability of human dental pulp fibroblasts under the effect of substances released by bleaching gel. Cells were seeded into 96 wells plates (1 x 10³ cells/well) and placed in contact with culture medium conditioned by a 35 % hydrogen peroxide bleaching gel for 40 minutes, simulating the clinical condition of the in-office bleaching treatment. Cells cultured in ideal growth conditions served as positive control group (PC), and the cells grown in conditioned medium and non-irradiated served as negative control group (NC). Cells grown in conditioned medium were submitted to a single irradiation with a diode laser (40 mW, 0.04 cm²) emitting at visible red (660 nm; RL) or near infrared (780 nm; NIR) using punctual technique, in contact mode and energy densities of 4, 6 or 10 J/cm². The cell viability was analyzed through the MTT reduction assay immediately and 24 hours after the irradiation. The data was compared by ANOVA followed by the Tukey's test (p < 0.05). The cell viability increased significantly in 24 hours within each group. The PC presented cell viability significantly higher than NC in both experimental times. Only the NIR/10 J/cm² group presented cell viability similar to that of PC in 24 hours. The phototherapy with low intensity laser in defined parameters is able to compensate the cytotoxic effects of substances released by 35 % hydrogen peroxide bleaching gel.
Resumo:
Objetivou-se avaliar os efeitos da ingestão diária de quatro níveis de fósforo (8, 12, 15 e 18 g) sobre o metabolismo de macrominerais (P, Ca, Mg, Na, K e S), incluindo a ingestão, a concentração no rúmen, a taxa de passagem do líquido ruminal, a excreção nas fezes e a disponibilidade aparente. Utilizaram-se quatro bubalinos adultos com fístulas ruminais em delineamento quadrado latino (4 × 4) com dieta total constituída de cana-de-açúcar como volumoso (85%) e concentrado formulado com um dos níveis de fósforo. Os níveis de fósforo não ocasionaram diferença significativa na concentração mineral no rúmen de nenhum mineral estudado. A concentração média de fósforo no conteúdo ruminal foi de 0,98% na matéria seca, enquanto o teor de fósforo nas rações variou de 0,12 a 0,34%, comprovando alta reciclagem de fósforo pela saliva. Níveis crescentes de fósforo na dieta, variando de 8 a 18 g/animal/dia, não influenciam as disponibilidades de cálcio e magnésio. Com o nível de fósforo de 15 g/dia, houve melhor utilização do fósforo da dieta. A ingestão de níveis crescentes de fósforo em g/kg0,75 (X) promoveu aumento linear na excreção fecal desse mineral em g/kg0,75 (Y) e baixos valores de disponibilidade do fósforo, que pode ser estimado pela equação Y = 0,03 + 0,610X, o que indica deficiência desse elemento mineral na dieta para o metabolismo animal.
Resumo:
The objective was to determine the cardiopulmonary effects and eyeball centralization time obtained with 15 or 30µg kg-1 of atracurium in anesthetized dogs under spontaneous breathing. Eighteen healthy adult mixed-breed dogs were used, which received 0.1mg kg-1 acepromazine and 0.5mg kg-1 morphine IM, followed by 4mg kg-1 propofol IV and maintained on isoflurane anesthesia with spontaneous breathing. Animals received 1mL 0.9% NaCl IV (CG), 15µg kg-1 (G15) or 30µg kg-1 (G30) of atracurium IV. Eyeball centralization time was measured; heart rate (HR), systolic (SAP), mean (MAP) and diastolic (DAP) arterial pressures, respiratory rate (RR), tidal volume (Vt) and minute volume (Vm) were determined every 5min, and pH, arterial CO2 pressure (PaCO2 ), arterial O2 pressure (PaO2 ), hemoglobin oxygen saturation (SaO2 ), bicarbonate (HCO3-) and base excess (BE) every 15min until 60min. Both doses of atracurium produced a similar period of eyeball centralization. Vt in groups treated with atracurium was lower than in CG up to 15min. Vm in G15 differed from CG up to 10min and in G30 up to 25min. No differences were observed for cardiovascular parameters, RR, SaO2, PaO2, HCO3- and BE. pH decreased in CG between 30 and 60min and in G15 and G30 at 15min. G30 differed from CG between 15 and 30min. PaCO2 in GC differed from baseline between 30 and 60min and in G15 differed at 15min. Atracurium at the dose of 15µg kg-1 is adequate for short corneal procedures in inhalant-anesthetized dogs under spontaneous breathing.