881 resultados para Low Speed Switched Reluctance Machine
Resumo:
A constant-current stimulator for high-impedance loads using only low-cost standard high-voltage components Is presented. A voltage-regulator powers an oscillator built across the primary of a step-up transformer whose secondary supplies, after rectification, the high voltage to a switched current-mirror in the driving stage. Adjusting the regulated voltage controls the pulsed-current intensity. A prototype produces stimulus of amplitude and pulsewidth within 0 less than or equal to I-skin less than or equal to 20 mA and 50 mus less than or equal to T-pulse less than or equal to 1 ms, respectively. Pulse-repetition spans from 1 Hz to 10 Hz. Worst case ripple is 3.7% at I-skin = 1 mA. Overall consumption is 5.6 W at I-skin = 20 mA.
Resumo:
This work will propose the control of an induction machine in field coordinates with imposed stator current based on theory of variable structure control and sliding mode. We describe the model of an induction machine in field coordinates with imposed stator current and we show the design of variable structure control and sliding mode to get a desirable dynamic performance of that plant. To estimate the inaccessible states we will use a state observer (estimator) based on field coordinates induction machine. We will present the results of simulations in any operation condition (start, speed reversal and load) and with parameters variation of the machine compared to a PI control scheme.
Resumo:
Statement of problem. Cavity and tooth preparations generate heat because the use of rotary cutting instruments on dental tissues creates friction. Dental pulps cannot survive temperature increases greater than 5.5degreesC.Purpose. This study evaluated the efficiency of 3 different water flows for 2 different tooth preparation techniques to determine which are safe for use.Material and methods. Thermocouples were placed in the pulpal chambers of 30 bovine teeth, and 1 of 2 tooth preparation techniques was used: a low-load intermittent tooth preparation technique or a high-load tooth preparation technique without intervals. Water flows of 0, 30, and 45 mL/min were associated with each technique, for a total of 6 different groups. The results were analyzed with a 2-factor analysis of variance (P<.05).Results. Temperature increases with the high-load technique were 16.40&DEG;C without cooling (group 1), 11.68&DEG;C with 30 mL/min air-water spray cooling (group III), and 9.96&DEG;C with 45 mL/min cooling (group V). With the low-load tooth preparation technique, a 9.54&DEG;C increase resulted with no cooling (group II), a 1.56&DEG;C increase with 30 mL/min air-water spray cooling (group TV), and a 0.04&DEG;C decrease with 45 mL/min cooling (group VI). The low-load technique was associated with more ideal temperature changes.Conclusion. The results of this study confirm the necessity of using a low-load technique and water coolants during cavity and tooth preparation procedures.
Resumo:
Objective The aim of this study was to compare intrapulpal temperature increases produced by a high-speed high-torque (speed-increasing) handpiece, a high-speed low-torque handpiece (air-turbine) and an Er: YAG (Erbium: Yttrium-Aluminum-Garnet) laser. Subject and methods Thirty bovine incisors were reduced to a dentine thickness of 2.0 mm. Class V preparations were prepared to a depth of 1.5 mm, measured with a caliper or by a mark on the burs. A thermocouple was placed inside the pulp chamber to determine temperature increases (C). Analysis was performed on the following groups (n = 10) treated with: G1, low-torque handpiece; G2, high-torque handpiece; and G3, Er: YAG laser (2.94 mu m at 250 mJ/4 Hz), all with water cooling. The temperature increases were recorded with a computer linked to the thermocouples. Results The data were submitted to ANOVA and Tukey statistical test. The average temperature rises were: 1.92 +/- 0.80 degrees C for G1, 1.34 +/- 0.86 degrees C for G2, and 0.75 +/- 0.39 degrees C for G3. There were significant statistical differences among the groups (p = 0.095). All the groups tested did not have a change of temperature that exceeds the threshold of 5.5 degrees C. Conclusion Temperature response to the low and high torque handpieces seemed to be similar, however the Er: YAG laser generated a lower temperature rise.
Resumo:
This work aims to present the design and the evaluation of a standard multi-pole machine with permanent magnets inserted in the rotor by two different geometrical forms: aligned and skewed magnets. The design (new analytical method) was based on a standard 250 W three phase 12-pole induction motor (squirrel cage rotor type), beginning with the original stator constructive data to calculate the magnetic flux density to determine the permanent magnets. In the development of the work, a simple and modular rotor was built reusing the original 12-pole stator (concentrated windings). The machine was evaluated in a laboratory for the purpose of checking the quantity and quality of energy produced with the machine operating as a generator and its start, torque, and performance working as a motor. In conclusion, the modular skewed magnet is an option for electrical machines, for the generation of a reasonable quality, in the context of decentralized generation and a motor with high torque and low energetic consumption.
Resumo:
The caruncle is a structure present in the micropylar region of Euphorbiaceae seeds. This structure has the ecological function of promoting seed dispersal by ants (myrmecochory), but it is debated whether it also has an agronomical importance influencing seed germination. The influence of the caruncle on castor (Ricinus communis) seed germination was evaluated under low soil water content and high soil salinity. Seeds were germinated at soil water storage capacities varying from 22 to 50% and salinities (NaCl) varying from 0 to 10 dS m(-1) The germination (%) increased following the increments in soil moisture. hut the caruncle had no influence on this process at any moisture level. In one genotype. more root dry mass was produced when caruncle was excised. Increasing salinity reduced the percentage and speed of germination of castor seeds, but no influence of caruncle was detected. No evidence of caruncle influencing castor seed germination was found under low soil water content and high salinity.
Resumo:
The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).
Resumo:
An active leakage-injection scheme (ALIS) for low-voltage (LV) high-density (HD) SRAMs is presented. By means of a feedback loop comprising a servo-amplifier and a common-drain MOSFET, a current matching the respective bit-line leakage is injected onto the line during precharge and sensing, preventing the respective capacitances from erroneous discharges. The technique is able to handle leakages up to hundreds of μA at high operating temperatures. Since no additional timing is required, read-out operations are performed at no speed penalty. A simplified 256×1bit array was designed in accordance with a 0.35 CMOS process and 1.2V-supply. A range of PSPICE simulation attests the efficacy of ALIS. With an extra power consumption of 242 μW, a 200 μA-leakage @125°C, corresponding to 13.6 times the cell current, is compensated.
Resumo:
This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.
Resumo:
Toothpastes usually contain detergents, humectants, water colorant, fluoride and thickeners (e.g. silica). Tooth wear has a multi-factorial etilology and the use of abrasive dentifrices is related to abrasion of dental tissues during toothbrushing. This study evaluated in vitro the abrasiveness of a commercial silica gel low-abrasive dentrifice compared to an experimental dentifrice containing vegetable (almond) oil. Distilled water served as a control group. Acrylic specimens (8 per group) were submitted to simulated toothbrushing with slurries of the commercial dentifrice experimental dentifrice, almond oil and water in an automatic brushing machine programmed to 30,000 brush strokes for each specimen which is equivalent to 2 years of manual toothbrushing. Thereafter, surface roughness (Ra) of the specimens was analyzed with a Surfcorder SE 1700 profilometer. Data were analyzed statistically by ANOVA and Tukey's test at 5% significance level. There was no statistically significant differences (p>0.05) in the surface roughness after brushing with water almond oil experimental dentifrice. The commercial dentifrice produced rougher surfaces compared to the control and abrasive free products (p<0.05). Further studies are necessary in confirm the potential benefits of using vegetable oil in toothpaste as an alternative in abrasives in an attempt to minimize the tooth wear caused by toothbrushing.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
ResumoThe main idea of this work is based on the analysis of the electric torque through the acting of the PS in the power system, provided of a control for the compensation degree (PSC). A linear model of the single machine-infinite bus system is used with a PS installed (SMIB/PS system). The variable that represents the presence of PS in the net is associated to the phase displacement introduced in the terminal voltage of the synchronous machine by PS. For the input signals of the PSC are evaluated variations of the angular speed of the rotor, the current magnitude and the active power through the line where the PS is located. The simulations are accomplished to analyze the influence of the PS in the torque formation (synchronizing and damping), of the SMIB/PS system. The analysis are developed in the time and frequency domain.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
Currently, one of factors that cause the production cost increase of soybean crop is the pesticide application. The most important disease in soybean crop is Asian rust, caused by Phakopsora pachyrhizi Sydon & P. Sydon fungus, which can cause significant loss of the production. Therefore, this work aimed at evaluation of different spraying techniques on the spray deposits and some parameters of soybean crop: grain size, weight of 1 000 seeds and the crop productivity. Two experiments were carried out in the experimental area of FCA/UNESP (Faculdade de Ciencias Agronomicas/Universidade Estadual Paulista Julio de Mesquita Filho) - Botucatu, S P, Brazil, in soybean crop, Conquista variety, in the 2007/2008 season. In the first experiment, three air levels (0, 9 and 29 km/h of the air speed generated by fan) with flat fan nozzle XR 8002 with a spray volume of 130 l/ha were compared with a rotating nozzle - using low volume oily - LVO at 40 l/ha of spray volume. The second experiment was carried out under the same conditions as the previous experiment, including a control treatment (untreated plants). The disease severity was evaluated using a diagrammatic scale with a visual evaluation of the disease on 15 leaves of each plot. The grades varied between 0.6 and 78.5% of the disease severity. The use of air assistance when compared with the rotating system nozzle did not show significant differences for spray deposits on adaxial and abaxial surface of the leaves in bottom part of the plant. The air assistance with maximum air speed (29 km/h) increased the productivity with respect of the other treatments.
Resumo:
In this work we developed a setup to measure the speed of sound in gases using a laser ultrasonics system. The mentioned setup is an all optical system composed by a Q-switched Nd:YAG laser to generate the sound waves, and a fiber optical microphone to detect them. The Nd:YAG provided a laser pulse of approximately 420 mJ energy and 9 ns of pulse width, at the wavelength of 1064 nm. The pulsed laser beam, focused by a positive lens, was used to generate an electrical breakdown (in the gas) which, in turn, generates an sound wave that traveled through a determined distance and reached the fiber optical microphone. The resulting signal was acquired in an oscilloscope and the time difference between the optical pulse and the arrival of the sound waves was used to calculate the speed of sound, since the distance was known. The system was initially tested to measure the speed of sound in air, at room pressure and temperature and it presented results in agreement with the theory, showing to be suitable to measure the speed of sound in gases. © 2012 American Institute of Physics.