870 resultados para Lot-scheduling
Resumo:
Lightpath scheduling is an important capability in next-generation wavelength-division multiplexing (WDM) optical networks to reserve resources in advance for a specified time period while provisioning end-to-end lightpaths. In a dynamic environment, the end user requests for dynamic scheduled lightpath demands (D-SLDs) need to be serviced without the knowledge of future requests. Even though the starting time of the request may be hours or days from the current time, the end-user however expects a quick response as to whether the request could be satisfied. We propose a two-phase approach to dynamically schedule and provision D-SLDs. In the first phase, termed the deterministic lightpath scheduling phase, upon arrival of a lightpath request, the network control plane schedules a path with guaranteed resources so that the user can get a quick response with a deterministic lightpath schedule. In the second phase, termed the lightpath re-optimization phase, we re-provision some already scheduled lightpaths to re-optimize for improving network performance. We study two reoptimization scenarios to reallocate network resources while maintaining the existing lightpath schedules. Experimental results show that our proposed two-phase dynamic lightpath scheduling approach can greatly reduce network blocking.
Resumo:
We propose an efficient scheduling scheme that optimizes advance-reserved lightpath services in reconfigurable WDM networks. A re-optimization approach is devised to reallocate network resources for dynamic service demands while keeping determined schedule unchanged.
Resumo:
This paper proposes three new hybrid mechanisms for the scheduling of grid tasks, which integrate reactive and proactive approaches. They differ by the scheduler used to define the initial schedule of an application and by the scheduler used to reschedule the application. The mechanisms are compared to reactive and proactive mechanisms. Results show that hybrid approach produces performance close to that of the reactive mechanisms, but demanding less migrations.
Resumo:
The single machine scheduling problem with a common due date and non-identical ready times for the jobs is examined in this work. Performance is measured by the minimization of the weighted sum of earliness and tardiness penalties of the jobs. Since this problem is NP-hard, the application of constructive heuristics that exploit specific characteristics of the problem to improve their performance is investigated. The proposed approaches are examined through a computational comparative study on a set of 280 benchmark test problems with up to 1000 jobs.
Resumo:
Setup operations are significant in some production environments. It is mandatory that their production plans consider some features, as setup state conservation across periods through setup carryover and crossover. The modelling of setup crossover allows more flexible decisions and is essential for problems with long setup times. This paper proposes two models for the capacitated lot-sizing problem with backlogging and setup carryover and crossover. The first is in line with other models from the literature, whereas the second considers a disaggregated setup variable, which tracks the starting and completion times of the setup operation. This innovative approach permits a more compact formulation. Computational results show that the proposed models have outperformed other state-of-the-art formulation.
Resumo:
Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.
Resumo:
Nel lavoro di tesi qui presentato si indaga l'applicazione di tecniche di apprendimento mirate ad una più efficiente esecuzione di un portfolio di risolutore di vincoli (constraint solver). Un constraint solver è un programma che dato in input un problema di vincoli, elabora una soluzione mediante l'utilizzo di svariate tecniche. I problemi di vincoli sono altamente presenti nella vita reale. Esempi come l'organizzazione dei viaggi dei treni oppure la programmazione degli equipaggi di una compagnia aerea, sono tutti problemi di vincoli. Un problema di vincoli è formalizzato da un problema di soddisfacimento di vincoli(CSP). Un CSP è descritto da un insieme di variabili che possono assumere valori appartenenti ad uno specico dominio ed un insieme di vincoli che mettono in relazione variabili e valori assumibili da esse. Una tecnica per ottimizzare la risoluzione di tali problemi è quella suggerita da un approccio a portfolio. Tale tecnica, usata anche in am- biti come quelli economici, prevede la combinazione di più solver i quali assieme possono generare risultati migliori di un approccio a singolo solver. In questo lavoro ci preoccupiamo di creare una nuova tecnica che combina un portfolio di constraint solver con tecniche di machine learning. Il machine learning è un campo di intelligenza articiale che si pone l'obiettivo di immettere nelle macchine una sorta di `intelligenza'. Un esempio applicativo potrebbe essere quello di valutare i casi passati di un problema ed usarli in futuro per fare scelte. Tale processo è riscontrato anche a livello cognitivo umano. Nello specico, vogliamo ragionare in termini di classicazione. Una classicazione corrisponde ad assegnare ad un insieme di caratteristiche in input, un valore discreto in output, come vero o falso se una mail è classicata come spam o meno. La fase di apprendimento sarà svolta utilizzando una parte di CPHydra, un portfolio di constraint solver sviluppato presso la University College of Cork (UCC). Di tale algoritmo a portfolio verranno utilizzate solamente le caratteristiche usate per descrivere determinati aspetti di un CSP rispetto ad un altro; queste caratteristiche vengono altresì dette features. Creeremo quindi una serie di classicatori basati sullo specifico comportamento dei solver. La combinazione di tali classicatori con l'approccio a portfolio sara nalizzata allo scopo di valutare che le feature di CPHydra siano buone e che i classicatori basati su tali feature siano affidabili. Per giusticare il primo risultato, eettueremo un confronto con uno dei migliori portfolio allo stato dell'arte, SATzilla. Una volta stabilita la bontà delle features utilizzate per le classicazioni, andremo a risolvere i problemi simulando uno scheduler. Tali simulazioni testeranno diverse regole costruite con classicatori precedentemente introdotti. Prima agiremo su uno scenario ad un processore e successivamente ci espanderemo ad uno scenario multi processore. In questi esperimenti andremo a vericare che, le prestazioni ottenute tramite l'applicazione delle regole create appositamente sui classicatori, abbiano risultati migliori rispetto ad un'esecuzione limitata all'utilizzo del migliore solver del portfolio. I lavoro di tesi è stato svolto in collaborazione con il centro di ricerca 4C presso University College Cork. Su questo lavoro è stato elaborato e sottomesso un articolo scientico alla International Joint Conference of Articial Intelligence (IJCAI) 2011. Al momento della consegna della tesi non siamo ancora stati informati dell'accettazione di tale articolo. Comunque, le risposte dei revisori hanno indicato che tale metodo presentato risulta interessante.
Resumo:
Crew scheduling and crew rostering are similar and related problems which can be solved by similar procedures. So far, the existing solution methods usually create a model for each one of these problems (scheduling and rostering), and when they are solved together in some cases an interaction between models is considered in order to obtain a better solution. A single set covering model to solve simultaneously both problems is presented here, where the total quantity of drivers needed is directly considered and optimized. This integration allows to optimize all of the depots at the same time, while traditional approaches needed to work depot by depot, and also it allows to see and manage the relationship between scheduling and rostering, which was known in some degree but usually not easy to quantify as this model permits. Recent research in the area of crew scheduling and rostering has stated that one of the current challenges to be achieved is to determine a schedule where crew fatigue, which depends mainly on the quality of the rosters created, is reduced. In this approach rosters are constructed in such way that stable working hours are used in every week of work, and a change to a different shift is done only using free days in between to make easier the adaptation to the new working hours. Computational results for real-world-based instances are presented. Instances are geographically diverse to test the performance of the procedures and the model in different scenarios.
Resumo:
This work presents exact, hybrid algorithms for mixed resource Allocation and Scheduling problems; in general terms, those consist into assigning over time finite capacity resources to a set of precedence connected activities. The proposed methods have broad applicability, but are mainly motivated by applications in the field of Embedded System Design. In particular, high-performance embedded computing recently witnessed the shift from single CPU platforms with application-specific accelerators to programmable Multi Processor Systems-on-Chip (MPSoCs). Those allow higher flexibility, real time performance and low energy consumption, but the programmer must be able to effectively exploit the platform parallelism. This raises interest in the development of algorithmic techniques to be embedded in CAD tools; in particular, given a specific application and platform, the objective if to perform optimal allocation of hardware resources and to compute an execution schedule. On this regard, since embedded systems tend to run the same set of applications for their entire lifetime, off-line, exact optimization approaches are particularly appealing. Quite surprisingly, the use of exact algorithms has not been well investigated so far; this is in part motivated by the complexity of integrated allocation and scheduling, setting tough challenges for ``pure'' combinatorial methods. The use of hybrid CP/OR approaches presents the opportunity to exploit mutual advantages of different methods, while compensating for their weaknesses. In this work, we consider in first instance an Allocation and Scheduling problem over the Cell BE processor by Sony, IBM and Toshiba; we propose three different solution methods, leveraging decomposition, cut generation and heuristic guided search. Next, we face Allocation and Scheduling of so-called Conditional Task Graphs, explicitly accounting for branches with outcome not known at design time; we extend the CP scheduling framework to effectively deal with the introduced stochastic elements. Finally, we address Allocation and Scheduling with uncertain, bounded execution times, via conflict based tree search; we introduce a simple and flexible time model to take into account duration variability and provide an efficient conflict detection method. The proposed approaches achieve good results on practical size problem, thus demonstrating the use of exact approaches for system design is feasible. Furthermore, the developed techniques bring significant contributions to combinatorial optimization methods.
Resumo:
In questa tesi ci occuperemo di fornire un modello MIP di base e di alcune sue varianti, realizzate allo scopo di comprenderne il comportamento ed eventualmente migliorarne l’efficienza. Le diverse varianti sono state costruite agendo in particolar modo sulla definizione di alcuni vincoli, oppure sui bound delle variabili, oppure ancora nell’obbligare il risolutore a focalizzarsi su determinate decisioni o specifiche variabili. Sono stati testati alcuni dei problemi tipici presenti in letteratura e i diversi risultati sono stati opportunamente valutati e confrontati. Tra i riferimenti per tale confronto sono stati considerati anche i risultati ottenibili tramite un modello Constraint Programming, che notoriamente produce risultati apprezzabili in ambito di schedulazione. Un ulteriore scopo della tesi è, infatti, comparare i due approcci Mathematical Programming e Constraint Programming, identificandone quindi i pregi e gli svantaggi e provandone la trasferibilità al modello raffrontato.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
Resumo:
In piattaforme di Stream Processing è spesso necessario eseguire elaborazioni differenziate degli stream di input. Questa tesi ha l'obiettivo di realizzare uno scheduler in grado di attribuire priorità di esecuzione differenti agli operatori deputati all'elaborazione degli stream.
Resumo:
Le reti ottiche, grazie alla loro elevata capacità, hanno acquisito sempre maggiore importanza negli ultimi anni, sia per via del crescente volume di dati scambiati, legato soprattutto alla larga diffusione di Internet, sia per la necessità di comunicazioni in tempo reale. Dati i (relativamente) lunghi tempi di adattamento, questa tecnologia nativamente non è quella ottimale per il trasporto di un traffico a burst, tipico delle telecomunicazioni odierne. Le reti ibride cercano, quindi, di coniugare al meglio le potenzialità della commutazione ottica di circuito e della commutazione ottica a pacchetto. In questo lavoro, in particolare, ci si è concentrati su un'architettura di rete ibrida denominata 3LIHON (3-Level Integrated Hybrid Optical Network). Essa prevede tre distinti livelli di qualità di servizio (QoS) per soddisfare differenti necessità: - Guaranteed Service Type (GST): simile ad un servizio a commutazione di circuito, non ammette perdita di dati. - Statistically Multiplexed Real Time (SM/RT): simile ad un servizio a commutazione di pacchetto, garantisce ritardo nullo o molto basso all'interno della rete, permette un piccolo tasso di perdita di dati e ammette la contesa della banda. - Statistically Multiplexed Best Effort (SM/BE): simile ad un servizio a commutazione di pacchetto, non garantisce alcun ritardo tra i nodi ed ammette un basso tasso di perdita dei dati. In un nodo 3LIHON, il traffico SM/BE impossibile da servire, a causa ad es. dell'interruzione da parte di pacchetti aventi un livello di QoS più prioritario, viene irrimediabilmente perso. Questo implica anche lo spreco del tempo e delle risorse impiegati per trasmettere un pacchetto SM/BE fino alla sua interruzione. Nel presente lavoro si è cercato di limitare, per quanto possibile, questo comportamento sconveniente, adottando e comparando tre strategie, che hanno portato alla modifica del nodo 3LIHON standard ed alla nascita di tre sue varianti.
Resumo:
Zahnverlust zu Lebzeiten („antemortem tooth loss“, AMTL) kann als Folge von Zahnerkrankungen, Traumata, Zahnextraktionen oder extremer kontinuierlicher Eruption sowie als Begleiterscheinung fortgeschrittener Stadien von Skorbut oder Lepra auftreten. Nach dem Zahnverlust setzt die Wundheilung als Sekundärheilung ein, während der sich die Alveole mit Blut füllt und sich ein Koagulum bildet. Anschließend erfolgt dessen Umwandlung in Knochengewebe und schließlich verstreicht die Alveole derart, dass sie makroskopisch nicht mehr erkannt werden kann. Der Zeitrahmen der knöchernen Konsolidierung des Kieferkammes ist im Detail wenig erforscht. Aufgrund des gehäuften Auftretens von AMTL in menschlichen Populationen, ist die Erarbeitung eines Zeitfensters, mit dessen Hilfe durch makroskopische Beobachtung des Knochens die Zeitspanne seit dem Zahnverlust („time since tooth loss“, TSL) ermittelt werden kann, insbesondere im archäologischen Kontext äußerst wertvoll. Solch ein Zeitschema mit Angaben über die Variabilität der zeitlichen Abläufe bei den Heilungsvorgängen kann nicht nur in der Osteologie, sondern auch in der Forensik, der allgemeinen Zahnheilkunde und der Implantologie nutzbringend angewandt werden. rnrnNach dem Verlust eines Zahnes wird das Zahnfach in der Regel durch ein Koagulum aufgefüllt. Das sich bildende Gewebe wird rasch in noch unreifen Knochen umgewandelt, welcher den Kieferknochen und auch die angrenzenden Zähne stabilisiert. Nach seiner Ausreifung passt sich das Gewebe schließlich dem umgebenden Knochen an. Das Erscheinungsbild des Zahnfaches während dieses Vorgangs durchläuft verschiedene Stadien, welche in der vorliegenden Studie anhand von klinischen Röntgenaufnahmen rezenter Patienten sowie durch Untersuchungen an archäologischen Skelettserien identifiziert wurden. Die Heilungsvorgänge im Zahnfach können in eine prä-ossale Phase (innerhalb einer Woche nach Zahnverlust), eine Verknöcherungsphase (etwa 14 Wochen nach Zahnverlust) und eine ossifizierte bzw. komplett verheilte Phase (mindestens 29 Wochen nach Zahnverlust) eingeteilt werden. Etliche Faktoren – wie etwa die Resorption des Interdentalseptums, der Zustand des Alveolarknochens oder das Individualgeschlecht – können den normalen Heilungsprozess signifikant beschleunigen oder hemmen und so Unterschiede von bis zu 19 Wochen verursachen. Weitere Variablen wirkten sich nicht signifikant auf den zeitlichen Rahmen des Heilungsprozesse aus. Relevante Abhängigkeiten zwischen verschiedenen Variabeln wurden ungeachtet der Alveolenauffüllung ebenfalls getestet. Gruppen von unabhängigen Variabeln wurden im Hinblick auf Auffüllungsgrad und TSL in multivariablen Modellen untersucht. Mit Hilfe dieser Ergebnisse ist eine grobe Einschätzung der Zeitspanne nach einem Zahnverlust in Wochen möglich, wobei die Einbeziehung weiterer Parameter eine höhere Präzision ermöglicht. rnrnObwohl verschiedene dentale Pathologien in dieser Studie berücksichtigt wurden, sollten zukünftige Untersuchungen genauer auf deren potenzielle Einflussnahme auf den alveolaren Heilungsprozess eingehen. Der kausale Zusammenhang einiger Variablen (wie z. B. Anwesenheit von Nachbarzähnen oder zahnmedizinische Behandlungen), welche die Geschwindigkeit der Heilungsrate beeinflussen, wäre von Bedeutung für zukünftige Untersuchungen des oralen Knochengewebes. Klinische Vergleichsstudien an forensischen Serien mit bekannter TSL oder an einer sich am Anfang des Heilungsprozesses befindlichen klinischen Serie könnten eine Bekräftigung dieser Ergebnisse liefern.