893 resultados para Logic, Symbolic and mathematical.
Resumo:
The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.
Resumo:
We generalize the Hamilton-Jacobi formulation for higher-order singular systems and obtain the equations of motion as total differential equations. To do this we first study the constraints structure present in such systems.
Resumo:
The construction of a class of non-abelian Toda models admiting dyonic type soliton solutions is reviewed.
Resumo:
In the framework of the spacetime with torsion, we obtain the flavor evolution equation of the mass neutrino oscillation in vacuum. A comparison with the result of general relativity case shows that the flavor evolutionary equations in Riemann spacetime and Weitzenbock spacetimes are equivalent in the spherical symmetric Schwarzschild spacetime, but turn out to be different in the case of the axial symmetry.
Resumo:
Para avaliar o comportamento da suspensão do pulverizador autopropelido, foram desenvolvidos modelos físicos e matemáticos em função da excitação ocasionada pelas irregularidades do solo. Neste trabalho, estas irregularidades são representadas por obstáculos de uma pista normalizada segundo a norma ISO 5008. As equações do movimento são obtidas a partir dos modelos matemáticos de meio veículo. As simulações numéricas são executadas nos softwares Matlab® e Simulink®. A partir da entrada conhecida, podem-se determinar as características dos elementos da suspensão para obter níveis desejáveis de conforto e segurança. Foram analisadas quatro diferentes configurações do sistema, variando-se a relação de rigidez a partir de um modelo considerado padrão. Constatou-se que o aumento da relação de rigidez resulta na redução da aceleração vertical e no aumento do curso da suspensão, melhorando o conforto e diminuindo a segurança.
Resumo:
Neste artigo, discutimos o contexto do desenvolvimento da Geografia que, no século XVII, liberou-se do seu papel nas diferentes fés cristãs, bem como a importância da cisão dos Protestantes, em Luteranos e Calvinistas, para o processo de secularização, e o conseguinte estabelecimento da Geografia como ciência moderna. Analisamos a contribuição fundamental do luterano Bernhard Varen, cuja obra Geografia Geral apresenta o paradigma dessa nova ciência. Naquela época, a Geografia era considerada um ramo da matemática, e esta obra nos dá indícios sobre notações e conceitos matemáticos utilizados naquele século. Analisamos, particularmente, o uso da notação decimal de números não inteiros e algumas aplicações de conceitos trigonométricos, comparando a edição original com as principais reedições desta obra.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A partir de objeções às proposições de Mikhail BAKHTIN (ou V.N. VOLOCHINOV) sobre a produção da linguagem e do discurso literário no interior das relações sociais de produção, sugere-se a aplicação da semiótica peirceana, devidamente criticada para a análise da produção dos signos no nível da representação da consciência. Pretende-se com isto considerar o signo em toda a sua extensão, e não reduzido ao mero domínio do simbólico, e tornar mais claro o lugar e o papel das diversas formas ideológicas no interior da praxis.
Resumo:
A system of coupled evolution equations for the bulk velocity and the surface displacement is found to govern the long-wavelength perturbations in a Benard-Marangoni system. This system of equations, involving nonlinearity, dispersion, and dissipation, is a generalization of the usual Boussinesq system.
Resumo:
Podolsky's higher-order field equations are obtained by generalizing the laws of Podolsky's electrostatics, which follow from Coulomb's generalized law and superposition, to be consistent with special relativity. In addition, it is necessary to take into account the independence of the observed charge of a particle on its speed. It is also shown that the gauge-independent term concerning the Feynman propagator for Podolsky's generalized electrodynamics has a good ultraviolet behaviour at the expense of a negative metric massive ghost which, contrary to what is currently assumed in the literature, is non-tachyonic. A brief discussion on Podolsky's characteristic length is presented as well.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
In this work we develop an approach to obtain analytical expressions for potentials in an impenetrable box. In this kind of system the expression has the advantage of being valid for arbitrary values of the box length, and respect the correct quantum limits. The similarity of this kind of problem with the quasi exactly solvable potentials is explored in order to accomplish our goals. Problems related to the break of symmetries and simultaneous eigenfunctions of commuting operators are discussed.
Resumo:
Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.
Resumo:
Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.