940 resultados para Linear Connection
Resumo:
Data of corn ear production (kg/ha) of 196 half-sib progenies (HSP) of the maize population CMS-39 obtained from experiments carried out in four environments were used to adapt and assess the BLP method (best linear predictor) in comparison with to the selection among and within half-sib progenies (SAWHSP). The 196 HSP of the CMS-39 population developed by the National Center for Maize and Sorghum Research (CNPMS-EMBRAPA) were related through their pedigree with the recombined progenies of the previous selection cycle. The two methodologies used for the selection of the twenty best half-sib progenies, BLP and SAWHSP, led to similar expected genetic gains. There was a tendency in the BLP methodology to select a greater number of related progenies because of the previous generation (pedigree) than the other method. This implies that greater care with the effective size of the population must be taken with this method. The SAWHSP methodology was efficient in isolating the additive genetic variance component from the phenotypic component. The pedigree system, although unnecessary for the routine use of the SAWHSP methodology, allowed the prediction of an increase in the inbreeding of the population in the long term SAWHSP selection when recombination is simultaneous to creation of new progenies.
Resumo:
Hydrolysis of D-valyl-L-leucyl-L-arginine p-nitroanilide (7.5-90.0 µM) by human tissue kallikrein (hK1) (4.58-5.27 nM) at pH 9.0 and 37ºC was studied in the absence and in the presence of increasing concentrations of 4-aminobenzamidine (96-576 µM), benzamidine (1.27-7.62 mM), 4-nitroaniline (16.5-66 µM) and aniline (20-50 mM). The kinetic parameters determined in the absence of inhibitors were: Km = 12.0 ± 0.8 µM and k cat = 48.4 ± 1.0 min-1. The data indicate that the inhibition of hK1 by 4-aminobenzamidine and benzamidine is linear competitive, while the inhibition by 4-nitroaniline and aniline is linear mixed, with the inhibitor being able to bind both to the free enzyme with a dissociation constant Ki yielding an EI complex, and to the ES complex with a dissociation constant Ki', yielding an ESI complex. The calculated Ki values for 4-aminobenzamidine, benzamidine, 4-nitroaniline and aniline were 146 ± 10, 1,098 ± 91, 38.6 ± 5.2 and 37,340 ± 5,400 µM, respectively. The calculated Ki' values for 4-nitroaniline and aniline were 289.3 ± 92.8 and 310,500 ± 38,600 µM, respectively. The fact that Ki'>Ki indicates that 4-nitroaniline and aniline bind to a second binding site in the enzyme with lower affinity than they bind to the active site. The data about the inhibition of hK1 by 4-aminobenzamidine and benzamidine help to explain previous observations that esters, anilides or chloromethyl ketone derivatives of Nalpha-substituted arginine are more sensitive substrates or inhibitors of hK1 than the corresponding lysine compounds.
Resumo:
Concentrated solar power (CSP) is a renewable energy technology, which could contribute to overcoming global problems related to pollution emissions and increasing energy demand. CSP utilizes solar irradiation, which is a variable source of energy. In order to utilize CSP technology in energy production and reliably operate a solar field including thermal energy storage system, dynamic simulation tools are needed in order to study the dynamics of the solar field, to optimize production and develop control systems. The object of this Master’s Thesis is to compare different concentrated solar power technologies and configure a dynamic solar field model of one selected CSP field design in the dynamic simulation program Apros, owned by VTT and Fortum. The configured model is based on German Novatec Solar’s linear Fresnel reflector design. Solar collector components including dimensions and performance calculation were developed, as well as a simple solar field control system. The preliminary simulation results of two simulation cases under clear sky conditions were good; the desired and stable superheated steam conditions were maintained in both cases, while, as expected, the amount of steam produced was reduced in the case having lower irradiation conditions. As a result of the model development process, it can be concluded, that the configured model is working successfully and that Apros is a very capable and flexible tool for configuring new solar field models and control systems and simulating solar field dynamic behaviour.
Resumo:
The human adrenal cortex, involved in adaptive responses to stress, body homeostasis and secondary sexual characters, emerges from a tightly regulated development of a zone-specific secretion pattern during fetal life. Its development during fetal life is critical for the well being of pregnancy, the initiation of delivery, and even for an adequate adaptation to extra-uterine life. As early as from the sixth week of pregnancy, the fetal adrenal gland is characterized by a highly proliferative zone at the periphery, a concentric migration accompanied by cell differentiation (cortisol secretion) and apoptosis in the central androgen-secreting fetal zone. After birth, a strong reorganization occurs in the adrenal gland so that it better fulfills the newborn's needs, with aldosterone production in the external zona glomerulosa, cortisol secretion in the zona fasciculata and androgens in the central zona reticularis. In addition to the major hormonal stimuli provided by angiotensin II and adrenocorticotropin, we have tested for some years the hypotheses that such plasticity may be under the control of the extracellular matrix. A growing number of data have been harvested during the last years, in particular about extracellular matrix expression and its putative role in the development of the human adrenal cortex. Laminin, collagen and fibronectin have been shown to play important roles not only in the plasticity of the adrenal cortex, but also in cell responsiveness to hormones, thus clarifying some of the unexplained observations that used to feed controversies.
Resumo:
Ureases are enzymes from plants, fungi and bacteria that catalyze the hydrolysis of urea to form ammonia and carbon dioxide. While fungal and plant ureases are homo-oligomers of 90-kDa subunits, bacterial ureases are multimers of two or three subunit complexes. We showed that some isoforms of jack bean urease, canatoxin and the classical urease, bind to glycoconjugates and induce platelet aggregation. Canatoxin also promotes release of histamine from mast cells, insulin from pancreatic cells and neurotransmitters from brain synaptosomes. In vivo it induces rat paw edema and neutrophil chemotaxis. These effects are independent of ureolytic activity and require activation of eicosanoid metabolism and calcium channels. Helicobacter pylori, a Gram-negative bacterium that colonizes the human stomach mucosa, causes gastric ulcers and cancer by a mechanism that is not understood. H. pylori produces factors that damage gastric epithelial cells, such as the vacuolating cytotoxin VacA, the cytotoxin-associated protein CagA, and a urease (up to 10% of bacterial protein) that neutralizes the acidic medium permitting its survival in the stomach. H. pylori whole cells or extracts of its water-soluble proteins promote inflammation, activate neutrophils and induce the release of cytokines. In this paper we review data from the literature suggesting that H. pylori urease displays many of the biological activities observed for jack bean ureases and show that bacterial ureases have a secretagogue effect modulated by eicosanoid metabolites through lipoxygenase pathways. These findings could be relevant to the elucidation of the role of urease in the pathogenesis of the gastrointestinal disease caused by H. pylori.
Resumo:
The objectives of this study were to evaluate and compare the use of linear and nonlinear methods for analysis of heart rate variability (HRV) in healthy subjects and in patients after acute myocardial infarction (AMI). Heart rate (HR) was recorded for 15 min in the supine position in 10 patients with AMI taking β-blockers (aged 57 ± 9 years) and in 11 healthy subjects (aged 53 ± 4 years). HRV was analyzed in the time domain (RMSSD and RMSM), the frequency domain using low- and high-frequency bands in normalized units (nu; LFnu and HFnu) and the LF/HF ratio and approximate entropy (ApEn) were determined. There was a correlation (P < 0.05) of RMSSD, RMSM, LFnu, HFnu, and the LF/HF ratio index with the ApEn of the AMI group on the 2nd (r = 0.87, 0.65, 0.72, 0.72, and 0.64) and 7th day (r = 0.88, 0.70, 0.69, 0.69, and 0.87) and of the healthy group (r = 0.63, 0.71, 0.63, 0.63, and 0.74), respectively. The median HRV indexes of the AMI group on the 2nd and 7th day differed from the healthy group (P < 0.05): RMSSD = 10.37, 19.95, 24.81; RMSM = 23.47, 31.96, 43.79; LFnu = 0.79, 0.79, 0.62; HFnu = 0.20, 0.20, 0.37; LF/HF ratio = 3.87, 3.94, 1.65; ApEn = 1.01, 1.24, 1.31, respectively. There was agreement between the methods, suggesting that these have the same power to evaluate autonomic modulation of HR in both AMI patients and healthy subjects. AMI contributed to a reduction in cardiac signal irregularity, higher sympathetic modulation and lower vagal modulation.
Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings
Resumo:
Changes in visual function beyond high-contrast acuity are known to take place during normal aging. We determined whether sensitivity to linear sine-wave gratings and to an elementary stimulus preferentially processed in extrastriate areas could be distinctively affected by aging. We measured spatial contrast sensitivity twice for concentric polar (Bessel) and vertical linear gratings of 0.6, 2.5, 5, and 20 cycles per degree (cpd) in two age groups (20-30 and 60-70 years). All participants were free of identifiable ocular disease and had normal or corrected-to-normal visual acuity. Participants were more sensitive to Cartesian than to polar gratings in all frequencies tested, and the younger adult group was more sensitive to all stimuli tested. Significant differences between sensitivities of the two groups were found for linear (only 20 cpd; P<0.01) and polar gratings (all frequencies tested; P<0.01). The young adult group was significantly more sensitive to linear than to circular gratings in the 20 cpd frequency. The older adult group was significantly more sensitive to linear than to circular gratings in all spatial frequencies, except in the 20 cpd frequency. The results suggest that sensitivity to the two kinds of stimuli is affected differently by aging. We suggest that neural changes in the aging brain are important determinants of this difference and discuss the results according to current models of human aging.
Resumo:
Brain-derived neurotrophic factor (BDNF) is associated with neuroplasticity and synaptic strength, and is decreased in conditions associated with chronic stress. Nevertheless, BDNF has not yet been investigated in psoriasis, a chronic inflammatory systemic disease that is exacerbated by stress. Therefore, our aim was to determine BDNF plasma levels in psoriasis patients and healthy controls. Adult patients (n=94) presenting with psoriasis for at least 1 year were enrolled, and age- and gender-matched with healthy controls (n=307) from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Participants had neither a previous history of coronary artery disease nor current episode of major depression. BDNF plasma levels were determined using the Promega ELISA kit. A general linear model was used to compare BDNF levels in psoriasis patients and controls, with age, gender, systolic blood pressure, serum fasting glucose, blood lipid levels, triglycerides, smoking status, and body mass index examined. After adjusting for clinical and demographic variables, significantly decreased BNDF plasma levels were observed in psoriasis patients (P=0.01) (estimated marginal means of 3922 pg/mL; 95%CI=2660-5135) compared with controls (5788 pg/mL; 95%CI=5185-6442). Similar BDNF levels were found in both mild and severe cases of psoriasis. Our finding, that BDNF is decreased in psoriasis, supports the concept of a brain-skin connection in psoriasis. Further studies should determine if BDNF is increased after specific psoriasis treatments, and associated with different disease stages.
Resumo:
Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.
Resumo:
Foi estudada a transferência de calor transiente na agitação linear e intermitente (ALI) de embalagens metálicas contendo simulantes de alimentos, objetivando-se sua aplicação em processos de pasteurização ou esterilização e conseqüentes tratamentos térmicos mais eficientes, homogêneos e com produto de melhor qualidade. Foram utilizados quatro meios fluidos simulantes de alimentos de diferentes viscosidades e massas específicas: três óleos e água. Foram combinados efeitos de cinco tratamentos, sendo: meio simulante (4 níveis), espaço livre (3 níveis), freqüência de agitação (4 níveis), amplitude de agitação (2 níveis) e posição das latas (4 níveis). Os ensaios de aquecimento e resfriamento foram feitos em tanque com água à temperatura de 98 °C e 17-20 °C, respectivamente. Com os dados de penetração de calor em cada experimento, foram calculados os parâmetros de penetração de calor fh, jh, fc e jc. Os resultados foram modelados utilizando-se grupos de números adimensionais e expressos em termos de Nusselt, Prandtl, Reynolds e funções trigonométricas (com medidas de amplitude e freqüência de agitação, espaço livre e dimensões da embalagem). Foram estabelecidas as duas Equações gerais para as fases de aquecimento e resfriamento: Nu = ReA 0,199.Pr 0,288.sen(xa/AM)0,406.cos(xf/FA)1,039.cos((xf/FA).(EL/H).p)4,556 Aquecimento Nu = 0,1295.ReA0,047.Pr 0,193.sen(xa/AM)0,114.cos(xf/FA)0,641.cos((xf/FA).(EL/H).p)2,476 Resfriamento O processo de ALI pode ser aplicado em pasteurizadores ou autoclaves estáticas horizontais e verticais, com modificações simples. Concluiu-se que a ALI aumenta significativamente a taxa de transferência de calor, tanto no aquecimento como no resfriamento.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.
Resumo:
Time series analysis has gone through different developmental stages before the current modern approaches. These can broadly categorized as the classical time series analysis and modern time series analysis approach. In the classical one, the basic target of the analysis is to describe the major behaviour of the series without necessarily dealing with the underlying structures. On the contrary, the modern approaches strives to summarize the behaviour of the series going through its underlying structure so that the series can be represented explicitly. In other words, such approach of time series analysis tries to study the series structurally. The components of the series that make up the observation such as the trend, seasonality, regression and disturbance terms are modelled explicitly before putting everything together in to a single state space model which give the natural interpretation of the series. The target of this diploma work is to practically apply the modern approach of time series analysis known as the state space approach, more specifically, the dynamic linear model, to make trend analysis over Ionosonde measurement data. The data is time series of the peak height of F2 layer symbolized by hmF2 which is the height of high electron density. In addition, the work also targets to investigate the connection between solar activity and the peak height of F2 layer. Based on the result found, the peak height of the F2 layer has shown a decrease during the observation period and also shows a nonlinear positive correlation with solar activity.
Resumo:
In this work we look at two different 1-dimensional quantum systems. The potentials for these systems are a linear potential in an infinite well and an inverted harmonic oscillator in an infinite well. We will solve the Schrödinger equation for both of these systems and get the energy eigenvalues and eigenfunctions. The solutions are obtained by using the boundary conditions and numerical methods. The motivation for our study comes from experimental background. For the linear potential we have two different boundary conditions. The first one is the so called normal boundary condition in which the wave function goes to zero on the edge of the well. The second condition is called derivative boundary condition in which the derivative of the wave function goes to zero on the edge of the well. The actual solutions are Airy functions. In the case of the inverted oscillator the solutions are parabolic cylinder functions and they are solved only using the normal boundary condition. Both of the potentials are compared with the particle in a box solutions. We will also present figures and tables from which we can see how the solutions look like. The similarities and differences with the particle in a box solution are also shown visually. The figures and calculations are done using mathematical software. We will also compare the linear potential to a case where the infinite wall is only on the left side. For this case we will also show graphical information of the different properties. With the inverted harmonic oscillator we will take a closer look at the quantum mechanical tunneling. We present some of the history of the quantum tunneling theory, its developers and finally we show the Feynman path integral theory. This theory enables us to get the instanton solutions. The instanton solutions are a way to look at the tunneling properties of the quantum system. The results are compared with the solutions of the double-well potential which is very similar to our case as a quantum system. The solutions are obtained using the same methods which makes the comparison relatively easy. All in all we consider and go through some of the stages of the quantum theory. We also look at the different ways to interpret the theory. We also present the special functions that are needed in our solutions, and look at the properties and different relations to other special functions. It is essential to notice that it is possible to use different mathematical formalisms to get the desired result. The quantum theory has been built for over one hundred years and it has different approaches. Different aspects make it possible to look at different things.