966 resultados para Lightweight and heavyweight concrete
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Reproduced from type-written copy.
Resumo:
"American Society for Testing Materials ... Standard specifications for concrete irrigation pipe ... Designation: C118-39": 7 p. at end.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Objectives: Physique traits and their relationship to competitive success were assessed amongst lightweight rowers competing at the 2003 Australian Rowing Championships. Methods: Full anthropometric profiles were collected from 107 lightweight rowers (n = 65 males, n = 45 females) competing in the Under 23 and Open age categories. Performance assessments were obtained for 66 of these rowers based on results in the single sculls events. The relationship between physique traits and competitive success was then determined. Results: Lower body fat ( heat time estimate -8.4 s kg(-1), p< 0.01), greater total body mass ( heat time estimate -4.4 s kg(-1), p = 0.03), and muscle mass ( heat time estimate -10.2 s kg(-1), p< 0.01) were associated with faster 2000 m heat times. Conclusions: The more successful lightweight rowers were those who had lower body fat and greater total muscle mass.
Resumo:
Despite experimental evidences, the contributions of the concrete slab and composite action to the vertical shear strength of simply supported steel-concrete composite beams are not considered in current design codes, which lead to conservative designs. In this paper, the finite element method is used to investigate the flexural and shear strengths of simply supported composite beams under combined bending and shear. A three-dimensional finite element model has been developed to account for geometric and material nonlinear behavior of composite beams, and verified by experimental results. The verified finite element model is than employed to quantify the contributions of the concrete slab and composite action to the moment and shear capacities of composite beams. The effect of the degree of shear connection on the vertical shear strength of deep composite beams loaded in shear is studied. Design models for vertical shear strength including contributions from the concrete slab and composite action and for the ultimate moment-shear interaction ate proposed for the design of simply supported composite beams in combined bending and shear. The proposed design models provide a consistent and economical design procedure for simply supported composite beams.
Resumo:
Purpose: Although the body-mass management strategies of athletes in high-participation weight-category sports such as wrestling have been thoroughly investigated, little is known about such practices among lightweight rowers. This study examined the body-mass management practices of lightweight rowers before competition and compared these with current guidelines of the International Federation of Rowing Association (FISA). Quantification of nutrient intake in the 1-2 h between weigh-in and racing was also sought. Methods: Lightweight rowers (N = 100) competing in a national regatta completed a questionnaire that assessed body-mass management practices during the 4 wk before and throughout a regatta plus recovery strategies after weigh-in. Biochemical data were collected immediately after weigh-in to validate questionnaire responses. Responses were categorized according to gender and age category (Senior B or younger than 23 yr old, i.e., U23, Senior A or OPEN, i.e., open age limit) for competition. Results: Most athletes (male U23 76.5%, OPEN 92.3%; female U23 84.0%, OPEN 94.1%) decreased their body mass in the weeks before the regatta at rates compliant with FISA guidelines. Gradual dieting, fluid restriction, and increased training load were the most popular methods of body-mass management. Although the importance of recovery after weigh-in was recognized by athletes, nutrient intake and especially sodium (male U23 5.3 &PLUSMN; 4.9, OPEN 7.7 &PLUSMN; 5.9; female U23 5.7 &PLUSMN; 6.8, OPEN 10.2 &PLUSMN; 5.4 mg-kg(-1)) and fluid intake (male U23 12.1 &PLUSMN; 7.1, OPEN 13.5 &PLUSMN; 8.1; female U23 9.4 &PLUSMN; 7.4, OPEN 14.8 &PLUSMN; 6.9 mL.kg(-1)) were below current sports nutrition recommendations. Conclusion: Few rowers were natural lightweights; the majority reduced their body mass in the weeks before a regatta. Nutritional recovery strategies implemented by lightweight rowers after weigh-in were not consistent with current guidelines.
Resumo:
Plastic cracking of cement mortar and concrete is primarily attributable to desiccation by evaporation from unprotected surfaces. This causes high suctions (negative pressures) to develop in the pore water adjacent to these surfaces. Dissolved salts in the pore water can also contribute significantly to suctions. Quantitative expressions are available for all of the components of the total suction. The development of suctions over time is illustrated by the results of desiccation tests conducted on cement mortars, supplemented by data from the literature. It is shown that ambient conditions conducive to plastic cracking can arise almost anywhere, but that the extremely high suctions that develop in mature cement mortar and concrete do not imply that compression failures should occur A high value of fracture energy is derived from data from the desiccation tests that implies that plastic cracking is characterized by a significant zone of plastic straining or microcracking.